1
|
Tan J, Fahad M, Zhang L, Wu L, Wu X. Microrchidia OsMORC6 Positively Regulates Cadmium Tolerance and Uptake by Mediating DNA Methylation in Rice. RICE (NEW YORK, N.Y.) 2025; 18:25. [PMID: 40202563 PMCID: PMC11981988 DOI: 10.1186/s12284-025-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
Rice (Oryza sativa) is an extremely important global food crop. However, cadmium (Cd) contamination in paddy fields poses a serious threat to human health worldwide. To generate low-Cd or Cd-free rice germplasms, it is essential to understand the molecular mechanisms involved in Cd tolerance, uptake, and translocation from soil to plant. In this study, we identify three Microrchidia proteins, OsMORC6a, OsMORC6b, and OsMORC6c, that regulate Cd tolerance and accumulation, although they do not alter the translocation of Cd from roots to shoots. Knockout of all three genes results in reducing Cd accumulation and increasing sensitivity to Cd stress. Furthermore, transcriptome analysis reveals 1,127 differentially expressed genes (DEGs) in the morc6abc mutants, which are significantly enriched in 'plant-type cell wall' and 'oxidoreductase activity' pathways. Through an integrating DNA methylome and transcriptome data, we identify 247 hyper-DMR-associated DEGs and 325 hypo-DMR-associated DEGs in morc6abc mutants. Gene Ontology (Go) enrichment analysis reveals that OsMORC6 proteins positively regulate Cd tolerance and uptake by mediating DNA methylation, which regulates the proper expression of genes related to plant cell wall and oxidative stress under Cd stress. Taken together, our findings reveal novel genes that mediate Cd tolerance and accumulation by affecting DNA methylation, offering valuable resource for breeding low-Cd or Cd-free rice germplasms.
Collapse
Affiliation(s)
- Jingai Tan
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Muhammad Fahad
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lantian Zhang
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China.
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xia Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China.
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Guo P, Chong L, Jiao Z, Xu R, Niu Q, Zhu Y. Salt stress activates the CDK8-AHL10-SUVH2/9 module to dynamically regulate salt tolerance in Arabidopsis. Nat Commun 2025; 16:2454. [PMID: 40074748 PMCID: PMC11903955 DOI: 10.1038/s41467-025-57806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Salt stress has devastating effects on agriculture, yet the key regulators modulating the transcriptional dynamics of salt-responsive genes remain largely elusive in plants. Here, we discover that salt stress substantially induces the kinase activity of Mediator cyclin-dependent kinase 8 (CDK8), which is essential for its positive role in regulating salt tolerance. CDK8 is identified to phosphorylate AT-hook motif nuclear-localized protein 10 (AHL10) at serine 314, leading to its degradation under salt stress. Consistently, AHL10 is found to negatively regulate salt tolerance. Transcriptome analysis further indicates that CDK8 regulates over 20% of salt-responsive genes, half of which are co-regulated by AHL10. Moreover, AHL10 is revealed to recruit SU(VAR)3-9 homologs (SUVH2/9) to AT-rich DNA sequences in the nuclear matrix-attachment regions (MARs) of salt-responsive gene promoters, facilitating H3K9me2 deposition and repressing salt-responsive genes. Our study thereby has identified the CDK8-AHL10-SUVH2/9 module as a key molecular switch controlling transcriptional dynamics in response to salt stress.
Collapse
Affiliation(s)
- Pengcheng Guo
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Leelyn Chong
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhixin Jiao
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Rui Xu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qingfeng Niu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yingfang Zhu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China.
| |
Collapse
|
3
|
Xue Y, Cao X, Chen X, Deng X, Deng XW, Ding Y, Dong A, Duan CG, Fang X, Gong L, Gong Z, Gu X, He C, He H, He S, He XJ, He Y, He Y, Jia G, Jiang D, Jiang J, Lai J, Lang Z, Li C, Li Q, Li X, Liu B, Liu B, Luo X, Qi Y, Qian W, Ren G, Song Q, Song X, Tian Z, Wang JW, Wang Y, Wu L, Wu Z, Xia R, Xiao J, Xu L, Xu ZY, Yan W, Yang H, Zhai J, Zhang Y, Zhao Y, Zhong X, Zhou DX, Zhou M, Zhou Y, Zhu B, Zhu JK, Liu Q. Epigenetics in the modern era of crop improvements. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2784-3. [PMID: 39808224 DOI: 10.1007/s11427-024-2784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits. With recent technological advancements, epigenetic regulations at the single-cell level and at the large-scale population level are emerging as new focuses. This review offers an in-depth synthesis of the diverse epigenetic regulations, detailing the catalytic machinery and regulatory functions. It delves into the intricate interplay among various epigenetic elements and their collective influence on the modulation of crop traits. Furthermore, it examines recent breakthroughs in technologies for epigenetic modifications and their integration into strategies for crop improvement. The review underscores the transformative potential of epigenetic strategies in bolstering crop performance, advocating for the development of efficient tools to fully exploit the agricultural benefits of epigenetic insights.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yong Ding
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Cheng-Guo Duan
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082, China.
| | - Hang He
- Institute of Advanced Agricultural Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Shengbo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Yan He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuehui He
- School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiao Luo
- Shandong Provincial Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Weiqiang Qian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianwei Song
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yuan Wang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhe Wu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Yusheng Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, 63130, USA.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France.
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Wang C, Chen Z, Copenhaver GP, Wang Y. Heterochromatin in plant meiosis. Nucleus 2024; 15:2328719. [PMID: 38488152 PMCID: PMC10950279 DOI: 10.1080/19491034.2024.2328719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Heterochromatin is an organizational property of eukaryotic chromosomes, characterized by extensive DNA and histone modifications, that is associated with the silencing of transposable elements and repetitive sequences. Maintaining heterochromatin is crucial for ensuring genomic integrity and stability during the cell cycle. During meiosis, heterochromatin is important for homologous chromosome synapsis, recombination, and segregation, but our understanding of meiotic heterochromatin formation and condensation is limited. In this review, we focus on the dynamics and features of heterochromatin and how it condenses during meiosis in plants. We also discuss how meiotic heterochromatin influences the interaction and recombination of homologous chromosomes during prophase I.
Collapse
Affiliation(s)
- Cong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhiyu Chen
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Yingxiang Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
5
|
Xie Q, Yin X, Wang Y, Qi Y, Pan C, Sulaymanov S, Qiu QS, Zhou Y, Jiang X. The signalling pathways, calcineurin B-like protein 5 (CBL5)-CBL-interacting protein kinase 8 (CIPK8)/CIPK24-salt overly sensitive 1 (SOS1), transduce salt signals in seed germination in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:1486-1502. [PMID: 38238896 DOI: 10.1111/pce.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 04/06/2024]
Abstract
For plant growth under salt stress, sensing and transducing salt signals are central to cellular Na+ homoeostasis. The calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) complexes play critical roles in transducing salt signals in plants. Here, we show that CBL5, an ortholog of CBL4 and CBL10 in Arabidopsis, interacts with and recruits CIPK8/CIPK24 to the plasma membrane. Yeast cells coexpressing CBL5, CIPK8/CIPK24 and SOS1 demonstrated lesser Na+ accumulation and a better growth phenotype than the untransformed or SOS1 transgenic yeast cells under salinity. Overexpression of CBL5 improved the growth of the cipk8 or cipk24 single mutant but not the cipk8 cipk24 double mutant under salt stress, suggesting that CIPK8 and CIPK24 were the downstream targets of CBL5. Interestingly, seed germination in cbl5 was severely inhibited by NaCl, which was recovered by the overexpression of CBL5. Furthermore, CBL5 was mainly expressed in the cotyledons and hypocotyls, which are essential to seed germination. Na+ efflux activity in the hypocotyls of cbl5 was reduced relative to the wild-type under salt stress, enhancing Na+ accumulation. These findings indicate that CBL5 functions in seed germination and protects seeds and germinating seedlings from salt stress through the CBL5-CIPK8/CIPK24-SOS1 pathways.
Collapse
Affiliation(s)
- Qing Xie
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xiaochang Yin
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, China
| | - Yu Wang
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yuting Qi
- MOE Key Laboratory of Cell Activities and Stress Adaptations/School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chengcai Pan
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Sunnatulla Sulaymanov
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations/School of Life Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, China
| | - Xingyu Jiang
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
6
|
Ren Z, Gou R, Zhuo W, Chen Z, Yin X, Cao Y, Wang Y, Mi Y, Liu Y, Wang Y, Fan LM, Deng XW, Qian W. The MBD-ACD DNA methylation reader complex recruits MICRORCHIDIA6 to regulate ribosomal RNA gene expression in Arabidopsis. THE PLANT CELL 2024; 36:1098-1118. [PMID: 38092516 PMCID: PMC10980342 DOI: 10.1093/plcell/koad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/11/2023] [Indexed: 04/01/2024]
Abstract
DNA methylation is an important epigenetic mark implicated in selective rRNA gene expression, but the DNA methylation readers and effectors remain largely unknown. Here, we report a protein complex that reads DNA methylation to regulate variant-specific 45S ribosomal RNA (rRNA) gene expression in Arabidopsis (Arabidopsis thaliana). The complex, consisting of METHYL-CpG-BINDING DOMAIN PROTEIN5 (MBD5), MBD6, ALPHA-CRYSTALLIN DOMAIN PROTEIN15.5 (ACD15.5), and ACD21.4, directly binds to 45S rDNA. While MBD5 and MBD6 function redundantly, ACD15.5 and ACD21.4 are indispensable for variant-specific rRNA gene expression. These 4 proteins undergo phase separation in vitro and in vivo and are interdependent for their phase separation. The α-crystallin domain of ACD15.5 and ACD21.4, which is essential for their function, enables phase separation of the complex, likely by mediating multivalent protein interactions. The effector MICRORCHIDIA6 directly interacts with ACD15.5 and ACD21.4, but not with MBD5 and MBD6, and is recruited to 45S rDNA by the MBD-ACD complex to regulate variant-specific 45S rRNA expression. Our study reveals a pathway in Arabidopsis through which certain 45S rRNA gene variants are silenced, while others are activated.
Collapse
Affiliation(s)
- Zhitong Ren
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Runyu Gou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wanqing Zhuo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhiyu Chen
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaochang Yin
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Yuxin Cao
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Yue Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yingjie Mi
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Yannan Liu
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- College of Life Sciences, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liu-Min Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Weiqiang Qian
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Niu X, Ge Z, Ito H. Regulatory mechanism of heat-active retrotransposons by the SET domain protein SUVH2. FRONTIERS IN PLANT SCIENCE 2024; 15:1355626. [PMID: 38390294 PMCID: PMC10883384 DOI: 10.3389/fpls.2024.1355626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
New transposon insertions are deleterious to genome stability. The RNA-directed DNA methylation (RdDM) pathway evolved to regulate transposon activity via DNA methylation. However, current studies have not yet clearly described the transposition regulation. ONSEN is a heat-activated retrotransposon that is activated at 37°C. The plant-specific SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG (SUVH) family proteins function downstream of the RdDM pathway. The SUVH protein families are linked to TE silencing by two pathways, one through DNA methylation and the other through chromatin remodeling. In this study, we analyzed the regulation of ONSEN activity by SUVH2. We observed that ONSEN transcripts were increased; however, there was no transpositional activity in Arabidopsis suvh2 mutant. The suvh2 mutant produced siRNAs from the ONSEN locus under heat stress, suggesting that siRNAs are involved in suppressing transposition. These results provide new insights into the regulatory mechanisms of retrotransposons that involve siRNA in the RdDM pathway.
Collapse
Affiliation(s)
- Xiaoying Niu
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Zhiyu Ge
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
8
|
Li Z, Wang M, Zhong Z, Gallego-Bartolomé J, Feng S, Jami-Alahmadi Y, Wang X, Wohlschlegel J, Bischof S, Long JA, Jacobsen SE. The MOM1 complex recruits the RdDM machinery via MORC6 to establish de novo DNA methylation. Nat Commun 2023; 14:4135. [PMID: 37438334 DOI: 10.1038/s41467-023-39751-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
MORPHEUS' MOLECULE1 (MOM1) is an Arabidopsis factor previously shown to mediate transcriptional silencing independent of major DNA methylation changes. Here we find that MOM1 localizes with sites of RNA-directed DNA methylation (RdDM). Tethering MOM1 with an artificial zinc finger to an unmethylated FWA promoter leads to establishment of DNA methylation and FWA silencing. This process is blocked by mutations in components of the Pol V arm of the RdDM machinery, as well as by mutation of MICRORCHIDIA 6 (MORC6). We find that at some endogenous RdDM sites, MOM1 is required to maintain DNA methylation and a closed chromatin state. In addition, efficient silencing of newly introduced FWA transgenes is impaired in the mom1 mutant. In addition to RdDM sites, we identify a group of MOM1 peaks at active chromatin near genes that colocalized with MORC6. These findings demonstrate a multifaceted role of MOM1 in genome regulation.
Collapse
Affiliation(s)
- Zheng Li
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Ming Wang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Javier Gallego-Bartolomé
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, USA
| | | | - Xinyi Wang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - Sylvain Bischof
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jeff A Long
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, USA.
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Otake K, Kugou K, Robertlee J, Ohzeki JI, Okazaki K, Hanano S, Takahashi S, Shibata D, Masumoto H. De novo induction of a DNA-histone H3K9 methylation loop on synthetic human repetitive DNA in cultured tobacco cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:668-682. [PMID: 36825961 DOI: 10.1111/tpj.16164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/19/2023] [Indexed: 05/10/2023]
Abstract
Genetic modifications in plants are crucial tools for fundamental and applied research. Transgene expression usually varies among independent lines or their progeny and is associated with the chromatin structure of the insertion site. Strategies based on understanding how to manipulate the epigenetic state of the inserted gene cassette would help to ensure transgene expression. Here, we report a strategy for chromatin manipulation by the artificial tethering of epigenetic effectors to a synthetic human centromeric repetitive DNA (alphoid DNA) platform in plant Bright-Yellow-2 (BY-2) culture cells. By tethering DNA-methyltransferase (Nicotiana tabacum DRM1), we effectively induced DNA methylation and histone methylation (H3K9me2) on the alphoid DNA platform. Tethering of the Arabidopsis SUVH9, which has been reported to lack histone methyltransferase activity, also induced a similar epigenetic state on the alphoid DNA in BY-2 cells, presumably by activating the RNA-dependent DNA methylation (RdDM) pathway. Our results emphasize that the interplay between DNA and histone methylation mechanisms is intrinsic to plant cells. We also found that once epigenetic modification states were induced by the tethering of either DRM1 or SUVH9, the modification was maintained even when the direct tethering of the effector was inhibited. Our system enables the analysis of more diverse epigenetic effectors and will help to elucidate the chromatin assembly mechanisms of plant cells.
Collapse
Affiliation(s)
- Koichiro Otake
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kazuto Kugou
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Jekson Robertlee
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Jun-Ichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Koei Okazaki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Shigeru Hanano
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Daisuke Shibata
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| |
Collapse
|
10
|
Li Z, Wang M, Zhong Z, Gallego-Bartolomé J, Feng S, Jami-Alahmadi Y, Wang X, Wohlschlegel J, Bischof S, Long JA, Jacobsen SE. The MOM1 complex recruits the RdDM machinery via MORC6 to establish de novo DNA methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523455. [PMID: 36711532 PMCID: PMC9882083 DOI: 10.1101/2023.01.10.523455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
MOM1 is an Arabidopsis factor previously shown to mediate transcriptional silencing independent of major DNA methylation changes. Here we found that MOM1 localizes with sites of RNA-directed DNA methylation (RdDM). Tethering MOM1 with artificial zinc finger to unmethylated FWA promoter led to establishment of DNA methylation and FWA silencing. This process was blocked by mutations in components of the Pol V arm of the RdDM machinery, as well as by mutation of MORC6 . We found that at some endogenous RdDM sites, MOM1 is required to maintain DNA methylation and a closed chromatin state. In addition, efficient silencing of newly introduced FWA transgenes was impaired by mutation of MOM1 or mutation of genes encoding the MOM1 interacting PIAL1/2 proteins. In addition to RdDM sites, we identified a group of MOM1 peaks at active chromatin near genes that colocalized with MORC6. These findings demonstrate a multifaceted role of MOM1 in genome regulation.
Collapse
Affiliation(s)
- Zheng Li
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- These authors contributed equally
| | - Ming Wang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- These authors contributed equally
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- These authors contributed equally
| | - Javier Gallego-Bartolomé
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Present address: Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California at Los Angeles, CA, USA
| | - Xinyi Wang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California at Los Angeles, CA, USA
| | - Sylvain Bischof
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Present address: Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich Switzerland
| | - Jeffrey A. Long
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Wang Y, Liu Y, Qu S, Liang W, Sun L, Ci D, Ren Z, Fan LM, Qian W. Nitrogen starvation induces genome-wide activation of transposable elements in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2374-2384. [PMID: 36178606 DOI: 10.1111/jipb.13376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) availability is a major limiting factor for plant growth and agricultural productivity. Although the gene regulation network in response to N starvation has been extensively studied, it remains unknown whether N starvation has an impact on the activity of transposable elements (TEs). Here, we report that TEs can be transcriptionally activated in Arabidopsis under N starvation conditions. Through genetic screening of idm1-14 suppressors, we cloned GLU1, which encodes a glutamate synthase that catalyzes the synthesis of glutamate in the primary N assimilation pathway. We found that glutamate synthase 1 (GLU1) and its functional homologs GLU2 and glutamate transport 1 (GLT1) are redundantly required for TE silencing, suggesting that N metabolism can regulate TE activity. Transcriptome and methylome analyses revealed that N starvation results in genome-wide TE activation without inducing obvious alteration of DNA methylation. Genetic analysis indicated that N starvation-induced TE activation is also independent of other well-established epigenetic mechanisms, including histone methylation and heterochromatin decondensation. Our results provide new insights into the regulation of TE activity under stressful environments in planta.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yi Liu
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shaofeng Qu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Wenjie Liang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Linhua Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Dong Ci
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, China
| | - Zhitong Ren
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Liu-Min Fan
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, China
| |
Collapse
|
12
|
Yang Y, Hao C, Du J, Xu L, Guo Z, Li D, Cai H, Guo H, Li L. The carboxy terminal transmembrane domain of SPL7 mediates interaction with RAN1 at the endoplasmic reticulum to regulate ethylene signalling in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:878-892. [PMID: 35832006 DOI: 10.1111/nph.18376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis, copper (Cu) transport to the ethylene receptor ETR1 mediated using RAN1, a Cu transporter located at the endoplasmic reticulum (ER), and Cu homeostasis mediated using SPL7, the key Cu-responsive transcription factor, are two deeply conserved vital processes. However, whether and how the two processes interact to regulate plant development remain elusive. We found that its C-terminal transmembrane domain (TMD) anchors SPL7 to the ER, resulting in dual compartmentalisation of the transcription factor. Immunoprecipitation coupled mass spectrometry, yeast-two-hybrid assay, luciferase complementation imaging and subcellular co-localisation analyses indicate that SPL7 interacts with RAN1 at the ER via the TMD. Genetic analysis revealed that the ethylene-induced triple response was significantly compromised in the spl7 mutant, a phenotype rescuable by RAN1 overexpression but not by SPL7 without the TMD. The genetic interaction was corroborated by molecular analysis showing that SPL7 modulates RAN1 abundance in a TMD-dependent manner. Moreover, SPL7 is feedback regulated by ethylene signalling via EIN3, which binds the SPL7 promoter and represses its transcription. These results demonstrate that ER-anchored SPL7 constitutes a cellular mechanism to regulate RAN1 in ethylene signalling and lay the foundation for investigating how Cu homeostasis conditions ethylene sensitivity in the developmental context.
Collapse
Affiliation(s)
- Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Jianmei Du
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lei Xu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongwei Guo
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| |
Collapse
|
13
|
DNA polymerase epsilon interacts with SUVH2/9 to repress the expression of genes associated with meiotic DSB hotspot in Arabidopsis. Proc Natl Acad Sci U S A 2022; 119:e2208441119. [PMID: 36191225 PMCID: PMC9564942 DOI: 10.1073/pnas.2208441119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination is initiated by the SPORULATION 11 (SPO11)-triggered formation of double-strand breaks (DSBs) that usually occur in open chromatin with active transcriptional features in many eukaryotes. However, gene transcription at DSB sites appears to be detrimental for repair, but the regulatory mechanisms governing transcription at meiotic DSB sites are largely undefined in plants. Here, we demonstrate that the largest DNA polymerase epsilon subunit POL2A interacts with SU(VAR)3 to 9 homologs SUVH2 and SUVH9. N-SIM (structured illumination microscopy) observation shows that the colocalization of SUVH2 with the meiotic DSB marker γ-H2AX is dependent on POL2A. RNA-seq of male meiocytes demonstrates that POL2A and SUVH2 jointly repress the expression of 865 genes, which have several known characteristics associated with meiotic DSB sites. Bisulfite-seq and small RNA-seq of male meiocytes support the idea that the silencing of these genes by POL2A and SUVH2/9 is likely independent of CHH methylation or 24-nt siRNA accumulation. Moreover, pol2a suvh2 suvh9 triple mutants have more severe defects in meiotic recombination and fertility compared with either pol2a or suvh2 suvh9. Our results not only identify a epigenetic regulatory mechanism for gene silencing in male meiocytes but also reveal roles for DNA polymerase and SUVH2/9 beyond their classic functions in mitosis.
Collapse
|
14
|
Miryeganeh M. Epigenetic Mechanisms of Senescence in Plants. Cells 2022; 11:251. [PMID: 35053367 PMCID: PMC8773728 DOI: 10.3390/cells11020251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
Senescence is a major developmental transition in plants that requires a massive reprogramming of gene expression and includes various layers of regulations. Senescence is either an age-dependent or a stress-induced process, and is under the control of complex regulatory networks that interact with each other. It has been shown that besides genetic reprogramming, which is an important aspect of plant senescence, transcription factors and higher-level mechanisms, such as epigenetic and small RNA-mediated regulators, are also key factors of senescence-related genes. Epigenetic mechanisms are an important layer of this multilevel regulatory system that change the activity of transcription factors (TFs) and play an important role in modulating the expression of senescence-related gene. They include chromatin remodeling, DNA methylation, histone modification, and the RNA-mediated control of transcription factors and genes. This review provides an overview of the known epigenetic regulation of plant senescence, which has mostly been studied in the form of leaf senescence, and it also covers what has been reported about whole-plant senescence.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0412, Japan
| |
Collapse
|
15
|
Galli M, Martiny E, Imani J, Kumar N, Koch A, Steinbrenner J, Kogel K. CRISPR/SpCas9-mediated double knockout of barley Microrchidia MORC1 and MORC6a reveals their strong involvement in plant immunity, transcriptional gene silencing and plant growth. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:89-102. [PMID: 34487614 PMCID: PMC8710901 DOI: 10.1111/pbi.13697] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The Microrchidia (MORC) family proteins are important nuclear regulators in both animals and plants with critical roles in epigenetic gene silencing and genome stabilization. In the crop plant barley (Hordeum vulgare), seven MORC gene family members have been described. While barley HvMORC1 has been functionally characterized, very little information is available about other HvMORC paralogs. In this study, we elucidate the role of HvMORC6a and its potential interactors in regulating plant immunity via analysis of CRISPR/SpCas9-mediated single and double knockout (dKO) mutants, hvmorc1 (previously generated and characterized by our group), hvmorc6a, and hvmorc1/6a. For generation of hvmorc1/6a, we utilized two different strategies: (i) successive Agrobacterium-mediated transformation of homozygous single mutants, hvmorc1 and hvmorc6a, with the respective second construct, and (ii) simultaneous transformation with both hvmorc1 and hvmorc6a CRISPR/SpCas9 constructs. Total mutation efficiency in transformed homozygous single mutants ranged from 80 to 90%, while upon simultaneous transformation, SpCas9-induced mutation in both HvMORC1 and HvMORC6a genes was observed in 58% of T0 plants. Subsequent infection assays showed that HvMORC6a covers a key role in resistance to biotrophic (Blumeria graminis) and necrotrophic (Fusarium graminearum) plant pathogenic fungi, where the dKO hvmorc1/6a showed the strongest resistant phenotype. Consistent with this, the dKO showed highest levels of basal PR gene expression and derepression of TEs. Finally, we demonstrate that HvMORC1 and HvMORC6a form distinct nucleocytoplasmic homo-/heteromers with other HvMORCs and interact with components of the RNA-directed DNA methylation (RdDM) pathway, further substantiating that MORC proteins are involved in the regulation of TEs in barley.
Collapse
Affiliation(s)
- Matteo Galli
- Institute of PhytopathologyResearch Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Engie Martiny
- Institute of PhytopathologyResearch Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Jafargholi Imani
- Institute of PhytopathologyResearch Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Neelendra Kumar
- Institute of PhytopathologyResearch Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Aline Koch
- Institute for PhytomedicineUniversity of HohenheimStuttgartGermany
| | - Jens Steinbrenner
- Institute of PhytopathologyResearch Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Karl‐Heinz Kogel
- Institute of PhytopathologyResearch Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| |
Collapse
|
16
|
Arabidopsis MORC proteins function in the efficient establishment of RNA directed DNA methylation. Nat Commun 2021; 12:4292. [PMID: 34257299 PMCID: PMC8277788 DOI: 10.1038/s41467-021-24553-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
The Microrchidia (MORC) family of ATPases are required for transposable element (TE) silencing and heterochromatin condensation in plants and animals, and C. elegans MORC-1 has been shown to topologically entrap and condense DNA. In Arabidopsis thaliana, mutation of MORCs has been shown to reactivate silent methylated genes and transposons and to decondense heterochromatic chromocenters, despite only minor changes in the maintenance of DNA methylation. Here we provide the first evidence localizing Arabidopsis MORC proteins to specific regions of chromatin and find that MORC4 and MORC7 are closely co-localized with sites of RNA-directed DNA methylation (RdDM). We further show that MORC7, when tethered to DNA by an artificial zinc finger, can facilitate the establishment of RdDM. Finally, we show that MORCs are required for the efficient RdDM mediated establishment of DNA methylation and silencing of a newly integrated FWA transgene, even though morc mutations have no effect on the maintenance of preexisting methylation at the endogenous FWA gene. We propose that MORCs function as a molecular tether in RdDM complexes to reinforce RdDM activity for methylation establishment. These findings have implications for MORC protein function in a variety of other eukaryotic organisms.
Collapse
|
17
|
Zhou JX, Du P, Liu ZW, Feng C, Cai XW, He XJ. FVE promotes RNA-directed DNA methylation by facilitating the association of RNA polymerase V with chromatin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:467-479. [PMID: 33942410 DOI: 10.1111/tpj.15302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Association of RNA polymerase V (Pol V) with chromatin is a critical step for RNA- directed DNA methylation (RdDM) in plants. Although the methylated DNA-binding proteins SUVH2 and SUVH9 and the chromatin remodeler-containing complex DRD1-DMS3-RDM1 are known to be required for the association of Pol V with chromatin, the molecular mechanisms underlying the association of Pol V with different chromatin environments remain largely unknown. Here we found that SUVH9 interacts with FVE, a homolog of the mammalian retinoblastoma-associated protein, which has been previously identified as a shared subunit of the histone deacetylase complex and the polycomb-type histone H3K27 trimethyltransferase complex. We demonstrated that FVE facilitates the association of Pol V with chromatin and thus contributes to DNA methylation at a substantial subset of RdDM target loci. Compared with FVE-independent RdDM target loci, FVE-dependent RdDM target loci are more abundant in gene-rich chromosome arms than in pericentromeric heterochromatin regions. This study contributes to our understanding of how the association of Pol V with chromatin is regulated in different chromatin environments.
Collapse
Affiliation(s)
- Jin-Xing Zhou
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Ping Du
- National Institute of Biological Sciences, Beijing, 102206, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhang-Wei Liu
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Chao Feng
- National Institute of Biological Sciences, Beijing, 102206, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Abstract
Here, Parent et al. investigated the re-establishment of silencing in embryos using Arabidopsis. They demonstrate that small RNAs, along with asymmetric DNA methylation, direct the histone H3 lysine 9 dimethylation during Arabidopsis thaliana embryonic development, and this de novo silencing mechanism depends on the catalytic domain of SUVH9, a Su(Var)3-9 homolog thought to be catalytically inactive. Epigenetic reprogramming occurs during gametogenesis as well as during embryogenesis to reset the genome for early development. In flowering plants, many heterochromatic marks are maintained in sperm, but asymmetric DNA methylation is mostly lost. Asymmetric DNA methylation is dependent on small RNA but the re-establishment of silencing in embryo is not well understood. Here we demonstrate that small RNAs direct the histone H3 lysine 9 dimethylation during Arabidopsis thaliana embryonic development, together with asymmetric DNA methylation. This de novo silencing mechanism depends on the catalytic domain of SUVH9, a Su(Var)3-9 homolog thought to be catalytically inactive.
Collapse
|
19
|
Liu T, Yang J, Liu S, Zhao Y, Zhou J, Jin Y, Huang L, Yuan Y. Regulation of chlorogenic acid, flavonoid, and iridoid biosynthesis by histone H3K4 and H3K9 methylation in Lonicera japonica. Mol Biol Rep 2020; 47:9301-9311. [PMID: 33190199 PMCID: PMC7666716 DOI: 10.1007/s11033-020-05990-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/06/2020] [Indexed: 01/23/2023]
Abstract
Lonicera japonica is used in Chinese herbal medicines with a wide spectrum of pharmacological properties associated with chlorogenic acid, flavonoid and iridoid. The biosynthesis of these compounds could be affected by genetic inheritance and epigenetic modification. However, the mechanisms that regulate the expression of genes involved in the biosynthesis of these compounds are rarely known. The results of qRT-PCR showed that the biosynthesis gene expression of these compounds was related to histone H3K4 and H3K9 methylation levels. These active compounds content of L. japonica were measured by UPLC-MS/MS. H3K4me3 showed a positive correlation with chlorogenic acid and loganic acid content, and H3K9me positively correlated with luteolin content. The correlation between histone methylation levels and the levels of luteolin and loganic acid in L. japonica from different producing areas validate the regulatory role of histone methylation in biosynthesis of bioactive compounds. Our study demonstrated a potential regulatory network of H3K9/H3K4 methylation to gene expression and content of secondary metabolites, and provided a basis for understanding the mechanism underlying the variation of major bioactive compounds in L. japonica.
Collapse
Affiliation(s)
- Tianrui Liu
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Jian Yang
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Shuang Liu
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Yuyang Zhao
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Junhui Zhou
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Yan Jin
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Luqi Huang
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Yuan Yuan
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| |
Collapse
|
20
|
Rymen B, Ferrafiat L, Blevins T. Non-coding RNA polymerases that silence transposable elements and reprogram gene expression in plants. Transcription 2020; 11:172-191. [PMID: 33180661 PMCID: PMC7714444 DOI: 10.1080/21541264.2020.1825906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multisubunit RNA polymerase (Pol) complexes are the core machinery for gene expression in eukaryotes. The enzymes Pol I, Pol II and Pol III transcribe distinct subsets of nuclear genes. This family of nuclear RNA polymerases expanded in terrestrial plants by the duplication of Pol II subunit genes. Two Pol II-related enzymes, Pol IV and Pol V, are highly specialized in the production of regulatory, non-coding RNAs. Pol IV and Pol V are the central players of RNA-directed DNA methylation (RdDM), an RNA interference pathway that represses transposable elements (TEs) and selected genes. Genetic and biochemical analyses of Pol IV/V subunits are now revealing how these enzymes evolved from ancestral Pol II to sustain non-coding RNA biogenesis in silent chromatin. Intriguingly, Pol IV-RdDM regulates genes that influence flowering time, reproductive development, stress responses and plant–pathogen interactions. Pol IV target genes vary among closely related taxa, indicating that these regulatory circuits are often species-specific. Data from crops like maize, rice, tomato and Brassicarapa suggest that dynamic repositioning of TEs, accompanied by Pol IV targeting to TE-proximal genes, leads to the reprogramming of plant gene expression over short evolutionary timescales.
Collapse
Affiliation(s)
- Bart Rymen
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Laura Ferrafiat
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Todd Blevins
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| |
Collapse
|
21
|
Yang J, Chang Y, Qin Y, Chen D, Zhu T, Peng K, Wang H, Tang N, Li X, Wang Y, Liu Y, Li X, Xie W, Xiong L. A lamin-like protein OsNMCP1 regulates drought resistance and root growth through chromatin accessibility modulation by interacting with a chromatin remodeller OsSWI3C in rice. THE NEW PHYTOLOGIST 2020; 227:65-83. [PMID: 32129897 DOI: 10.1111/nph.16518] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/18/2020] [Indexed: 05/28/2023]
Abstract
Lamin proteins in animals are implicated in important nuclear functions, including chromatin organization, signalling transduction, gene regulation and cell differentiation. Nuclear Matrix Constituent Proteins (NMCPs) are lamin analogues in plants, but their regulatory functions remain largely unknown. We report that OsNMCP1 is localized at the nuclear periphery in rice (Oryza sativa) and induced by drought stress. OsNMCP1 overexpression resulted in a deeper and thicker root system, and enhanced drought resistance compared to the wild-type control. An assay for transposase accessible chromatin with sequencing (ATAC-seq) analysis revealed that OsNMCP1-overexpression altered chromatin accessibility in hundreds of genes related to drought resistance and root growth, including OsNAC10, OsERF48, OsSGL, SNAC1 and OsbZIP23. OsNMCP1 can interact with SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodelling complex subunit OsSWI3C. The reported drought resistance or root growth-related genes that were positively regulated by OsNMCP1 were negatively regulated by OsSWI3C under drought stress conditions, and OsSWI3C overexpression led to decreased drought resistance. We propose that the interaction between OsNMCP1 and OsSWI3C under drought stress conditions may lead to the release of OsSWI3C from the SWI/SNF gene silencing complex, thus changing chromatin accessibility in the genes related to root growth and drought resistance.
Collapse
Affiliation(s)
- Jun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yonghua Qin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- South-Central University for Nationalities, Wuhan, 430074, China
| | - Dijun Chen
- Department for Plant Cell and Molecular Biology (AG Kaufmann) Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Tao Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiqing Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Huaijun Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Ning Tang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yusen Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinmeng Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
22
|
Xu L, Jiang H. Writing and Reading Histone H3 Lysine 9 Methylation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:452. [PMID: 32435252 PMCID: PMC7218100 DOI: 10.3389/fpls.2020.00452] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/27/2020] [Indexed: 05/05/2023]
Abstract
In eukaryotes, histone H3 lysine 9 methylation (H3K9me) mediates the silencing of invasive and repetitive sequences by preventing the expression of aberrant gene products and the activation of transposition. In Arabidopsis, while it is well known that dimethylation of histone H3 at lysine 9 (H3K9me2) is maintained through a feedback loop between H3K9me2 and DNA methylation, the details of the H3K9me2-dependent silencing pathway have not been fully elucidated. Recently, the regulation and the function of H3K9 methylation have been extensively characterized. In this review, we summarize work from the recent studies regarding the regulation of H3K9me2, emphasizing the process of deposition and reading and the biological significance of H3K9me2 in Arabidopsis.
Collapse
Affiliation(s)
| | - Hua Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
23
|
Singh J, Pikaard CS. Reconstitution of siRNA Biogenesis In Vitro: Novel Reaction Mechanisms and RNA Channeling in the RNA-Directed DNA Methylation Pathway. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:195-201. [PMID: 32350049 DOI: 10.1101/sqb.2019.84.039842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotes deploy RNA-mediated gene silencing pathways to guard their genomes against selfish genetic elements, such as transposable elements and invading viruses. In plants, RNA-directed DNA methylation (RdDM) is used to silence selfish elements at the level of transcription. This process involves 24-nt short interfering RNAs (siRNAs) and longer noncoding RNAs to which the siRNAs base-pair. Recently, we showed that 24-nt siRNA biogenesis could be recapitulated in the test tube using purified enzymes, yielding biochemical answers to numerous questions left unresolved by prior genetic and genomic studies. Interestingly, each enzyme has activities that program what happens in the next step, thus channeling the RNAs within the RdDM pathway and restricting their diversion into alternative pathways. However, a similar mechanistic understanding is lacking for other important steps of the RdDM pathway. We discuss some of the steps most in need of biochemical investigation and important questions still in need of answers.
Collapse
Affiliation(s)
- Jasleen Singh
- Department of Molecular and Cellular Biochemistry and Department of Biology, Bloomington, Indiana 47405, USA
| | - Craig S Pikaard
- Department of Molecular and Cellular Biochemistry and Department of Biology, Bloomington, Indiana 47405, USA.,Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
24
|
Yin X, Xia Y, Xie Q, Cao Y, Wang Z, Hao G, Song J, Zhou Y, Jiang X. The protein kinase complex CBL10-CIPK8-SOS1 functions in Arabidopsis to regulate salt tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1801-1814. [PMID: 31858132 PMCID: PMC7242078 DOI: 10.1093/jxb/erz549] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/08/2019] [Indexed: 05/10/2023]
Abstract
Salt tolerance in plants is mediated by Na+ extrusion from the cytosol by the plasma membrane Na+/H+ antiporter SOS1. This is activated in Arabidopsis root by the protein kinase complex SOS2-SOS3 and in Arabidopsis shoot by the protein kinase complex CBL10-SOS2, with SOS2 as a key node in the two pathways. The sos1 mutant is more sensitive than the sos2 mutant, suggesting that other partners may positively regulate SOS1 activity. Arabidopsis has 26 CIPK family proteins of which CIPK8 is the closest homolog to SOS2. It is hypothesized that CIPK8 can activate Na+ extrusion by SOS1 similarly to SOS2. The plasma membrane Na+/H+ exchange activity of transgenic yeast co-expressing CBL10, CIPK8, and SOS1 was higher than that of untransformed and SOS1 transgenic yeast, resulting in a lower Na+ accumulation and a better growth phenotype under salinity. However, CIPK8 could not interact with SOS3, and the co-expression of SOS3, CIPK8, and SOS1 in yeast did not confer a significant salt tolerance phenotype relative to SOS1 transgenic yeast. Interestingly, cipk8 displayed a slower Na+ efflux, a higher Na+ level, and a more sensitive phenotype than wild-type Arabidopsis, but grew better than sos2 under salinity stress. As expected, sos2cipk8 exhibited a more severe salt damage phenotype relative to cipk8 or sos2. Overexpression of CIPK8 in both cipk8 and sos2cipk8 attenuated the salt sensitivity phenotype. These results suggest that CIPK8-mediated activation of SOS1 is CBL10-dependent and SOS3-independent, indicating that CIPK8 and SOS2 activity in shoots is sufficient for regulating Arabidopsis salt tolerance.
Collapse
Affiliation(s)
- Xiaochang Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- School of Life Science, Taishan Medical University, Tai’an, China
| | - Youquan Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Qing Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yuxin Cao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zhenyu Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Gangping Hao
- School of Life Science, Taishan Medical University, Tai’an, China
| | - Jie Song
- Shandong Key Laboratory of Plant Stress/College of Life Science, Shandong Normal University, Jinan, China
| | - Yang Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Correspondence: or
| | - Xingyu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Correspondence: or
| |
Collapse
|
25
|
Grimanelli D, Ingouff M. DNA Methylation Readers in Plants. J Mol Biol 2020:S0022-2836(20)30027-9. [PMID: 31931004 DOI: 10.1016/j.jmb.2019.12.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023]
Abstract
In plants, DNA methylation occurs in distinct sequence contexts, including CG, CHG, and CHH. Thus, plants have developed a surprisingly diverse set of DNA methylation readers to cope with an extended repertoire of methylated sites. The Arabidopsis genome contains twelve Methyl-Binding Domain proteins (MBD), and nine SET and RING finger-associated (SRA) domain containing proteins belonging to the SUVH clade, in addition to three homologs of UHRF1, namely VIM1-3, all containing SRA domains. In this review, we will highlight several research questions that remain unresolved with respect to the function of plant DNA methylation readers, which can have both de novo demethylase and maintenance activity. We argue that maintenance of CG methylation in plants likely involved actors not found in their mammalian counterparts, and that new evidence suggests significant reprogramming of DNA methylation during plant reproduction as an important new development in the field.
Collapse
Affiliation(s)
- Daniel Grimanelli
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, 911 Avenue Agropolis, 34394, Montpellier, France.
| | - Mathieu Ingouff
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, 911 Avenue Agropolis, 34394, Montpellier, France.
| |
Collapse
|
26
|
Gallego-Bartolomé J, Liu W, Kuo PH, Feng S, Ghoshal B, Gardiner J, Zhao JMC, Park SY, Chory J, Jacobsen SE. Co-targeting RNA Polymerases IV and V Promotes Efficient De Novo DNA Methylation in Arabidopsis. Cell 2019; 176:1068-1082.e19. [PMID: 30739798 PMCID: PMC6386582 DOI: 10.1016/j.cell.2019.01.029] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 11/19/2018] [Accepted: 01/16/2019] [Indexed: 11/01/2022]
Abstract
The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed light on the mechanisms and applications of DNA methylation to control gene expression. Here, we identified diverse RdDM proteins that are capable of targeting methylation and silencing in Arabidopsis when tethered to an artificial zinc finger (ZF-RdDM). We studied their order of action within the RdDM pathway by testing their ability to target methylation in different mutants. We also evaluated ectopic siRNA biogenesis, RNA polymerase V (Pol V) recruitment, targeted DNA methylation, and gene-expression changes at thousands of ZF-RdDM targets. We found that co-targeting both arms of the RdDM pathway, siRNA biogenesis and Pol V recruitment, dramatically enhanced targeted methylation. This work defines how RdDM components establish DNA methylation and enables new strategies for epigenetic gene regulation via targeted DNA methylation.
Collapse
Affiliation(s)
- Javier Gallego-Bartolomé
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Wanlu Liu
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Peggy Hsuanyu Kuo
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Basudev Ghoshal
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Gardiner
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jenny Miao-Chi Zhao
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Soo Young Park
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Joanne Chory
- Howard Hughes Medical Institute, La Jolla, CA 92037, USA; The Salk Institute, La Jolla, CA 92037, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Xiao X, Zhang J, Li T, Fu X, Satheesh V, Niu Q, Lang Z, Zhu JK, Lei M. A group of SUVH methyl-DNA binding proteins regulate expression of the DNA demethylase ROS1 in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:110-119. [PMID: 30589237 DOI: 10.1111/jipb.12768] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/25/2018] [Indexed: 05/22/2023]
Abstract
DNA methylation is typically regarded as a repressive epigenetic marker for gene expression. Genome-wide DNA methylation patterns in plants are dynamically regulated by the opposing activities of DNA methylation and demethylation reactions. In Arabidopsis, a DNA methylation monitoring sequence (MEMS) in the promoter of the DNA demethylase gene ROS1 functions as a methylstat that senses these opposing activities and regulates genome DNA methylation levels by adjusting ROS1 expression. How DNA methylation in the MEMS region promotes ROS1 expression is not known. Here, we show that several Su(var)3-9 homologs (SUVHs) can sense DNA methylation levels at the MEMS region and function redundantly to promote ROS1 expression. The SUVHs bind to the MEMS region, and the extent of binding is correlated with the methylation level of the MEMS. Mutations in the SUVHs lead to decreased ROS1 expression, causing DNA hypermethylation at more than 1,000 genomic regions. Thus, the SUVHs function to mediate the activation of gene transcription by DNA methylation.
Collapse
Affiliation(s)
- Xinlong Xiao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jieqiong Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Fu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qingfeng Niu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette 47907, USA
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
28
|
Duan CG, Zhu JK, Cao X. Retrospective and perspective of plant epigenetics in China. J Genet Genomics 2018; 45:621-638. [PMID: 30455036 DOI: 10.1016/j.jgg.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 01/21/2023]
Abstract
Epigenetics refers to the study of heritable changes in gene function that do not involve changes in the DNA sequence. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors or be part of normal developmental program. In eukaryotes, DNA wraps on a histone octamer (two copies of H2A, H2B, H3 and H4) to form nucleosome, the fundamental unit of chromatin. The structure of chromatin is subjected to a dynamic regulation through multiple epigenetic mechanisms, including DNA methylation, histone posttranslational modifications (PTMs), chromatin remodeling and noncoding RNAs. As conserved regulatory mechanisms in gene expression, epigenetic mechanisms participate in almost all the important biological processes ranging from basal development to environmental response. Importantly, all of the major epigenetic mechanisms in mammalians also occur in plants. Plant studies have provided numerous important contributions to the epigenetic research. For example, gene imprinting, a mechanism of parental allele-specific gene expression, was firstly observed in maize; evidence of paramutation, an epigenetic phenomenon that one allele acts in a single locus to induce a heritable change in the other allele, was firstly reported in maize and tomato. Moreover, some unique epigenetic mechanisms have been evolved in plants. For example, the 24-nt siRNA-involved RNA-directed DNA methylation (RdDM) pathway is plant-specific because of the involvements of two plant-specific DNA-dependent RNA polymerases, Pol IV and Pol V. A thorough study of epigenetic mechanisms is of great significance to improve crop agronomic traits and environmental adaptability. In this review, we make a brief summary of important progress achieved in plant epigenetics field in China over the past several decades and give a brief outlook on future research prospects. We focus our review on DNA methylation and histone PTMs, the two most important aspects of epigenetic mechanisms.
Collapse
Affiliation(s)
- Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
29
|
Wendte JM, Haag JR, Singh J, McKinlay A, Pontes OM, Pikaard CS. Functional Dissection of the Pol V Largest Subunit CTD in RNA-Directed DNA Methylation. Cell Rep 2018; 19:2796-2808. [PMID: 28658626 DOI: 10.1016/j.celrep.2017.05.091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/06/2017] [Accepted: 05/27/2017] [Indexed: 12/31/2022] Open
Abstract
Plant multisubunit RNA polymerase V (Pol V) transcription recruits Argonaute-small interfering RNA (siRNA) complexes that specify sites of RNA-directed DNA methylation (RdDM) for gene silencing. Pol V's largest subunit, NRPE1, evolved from the largest subunit of Pol II but has a distinctive C-terminal domain (CTD). We show that the Pol V CTD is dispensable for catalytic activity in vitro yet essential in vivo. One CTD subdomain (DeCL) is required for Pol V function at virtually all loci. Other CTD subdomains have locus-specific effects. In a yeast two-hybrid screen, the 3'→ 5' exoribonuclease RRP6L1 was identified as an interactor with the DeCL and glutamine-serine (QS)-rich subdomains located downstream of an Argonaute-binding subdomain. Experimental evidence indicates that RRP6L1 trims the 3' ends of Pol V transcripts sliced by Argonaute 4 (AGO4), suggesting a model whereby the CTD enables the spatial and temporal coordination of AGO4 and RRP6L1 RNA processing activities.
Collapse
Affiliation(s)
- Jered M Wendte
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Jeremy R Haag
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA; Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA
| | - Jasleen Singh
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Anastasia McKinlay
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Olga M Pontes
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA
| | - Craig S Pikaard
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA; Department of Molecular and Cellular Biochemistry, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA; Howard Hughes Medical Institute, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
30
|
Byeon B, Bilichak A, Kovalchuk I. Tissue-specific heat-induced changes in the expression of ncRNA fragments in Brassica rapa plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Manohar M, Choi HW, Manosalva P, Austin CA, Peters JE, Klessig DF. Plant and Human MORC Proteins Have DNA-Modifying Activities Similar to Type II Topoisomerases, but Require One or More Additional Factors for Full Activity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:87-100. [PMID: 27992291 DOI: 10.1094/mpmi-10-16-0208-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To elucidate one or more mechanisms through which microrchidia (MORC) proteins impact immunity, epigenetic gene silencing, and DNA modifications, the enzymatic activities of plant MORCs were characterized. Previously, we showed that plant MORC1s have ATPase and DNA endonuclease activities. Here, we demonstrate that plant MORCs have topoisomerase type II (topo II)-like activities, as they i) covalently bind DNA, ii) exhibit DNA-stimulated ATPase activity, iii) relax or nick supercoiled DNA, iv) catenate DNA, and v) decatenante kinetoplast DNA. Mutational analysis of tomato SlMORC1 suggests that a K loop-like sequence is required to couple DNA binding to ATPase stimulation as well as for efficient SlMORC1's DNA relaxation and catenation activities and in planta suppression of INF1-induced cell death, which is related to immunity. Human MORCs were found to exhibit the same topo II-like DNA modification activities as their plant counterparts. In contrast to typical topo IIs, SlMORC1 appears to require one or more accessory factors to complete some of its enzymatic activities, since addition of tomato extracts were needed for ATP-dependent, efficient conversion of supercoiled DNA to nicked/relaxed DNA and catenanes and for formation of topoisomer intermediates. Both plant and human MORCs bind salicylic acid; this suppresses their decatenation but not relaxation activity.
Collapse
Affiliation(s)
| | | | | | - Caroline A Austin
- 2 Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4HH, U.K.; and
| | - Joseph E Peters
- 3 Department of Microbiology, Cornell University, Ithaca, NY 14853, U.S.A
| | | |
Collapse
|
32
|
Koch A, Kang HG, Steinbrenner J, Dempsey DA, Klessig DF, Kogel KH. MORC Proteins: Novel Players in Plant and Animal Health. FRONTIERS IN PLANT SCIENCE 2017; 8:1720. [PMID: 29093720 PMCID: PMC5651269 DOI: 10.3389/fpls.2017.01720] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/20/2017] [Indexed: 05/02/2023]
Abstract
Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II)-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided.
Collapse
Affiliation(s)
- Aline Koch
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Jens Steinbrenner
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
- *Correspondence: Daniel F. Klessig
| | - Karl-Heinz Kogel
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
- Karl-Heinz Kogel
| |
Collapse
|
33
|
Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis. Proc Natl Acad Sci U S A 2016; 113:11967-11972. [PMID: 27708161 DOI: 10.1073/pnas.1614852113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ribosome production in eukaryotes requires the complex and precise coordination of several hundred assembly factors, including many small nucleolar RNAs (snoRNAs). However, at present, the distinct role of key snoRNAs in ribosome biogenesis remains poorly understood in higher plants. Here we report that a previously uncharacterized C (RUGAUGA)/D (CUGA) type snoRNA, HIDDEN TREASURE 2 (HID2), acts as an important regulator of ribosome biogenesis through a snoRNA-rRNA interaction. Nucleolus-localized HID2 is actively expressed in Arabidopsis proliferative tissues, whereas defects in HID2 cause a series of developmental defects reminiscent of ribosomal protein mutants. HID2 associates with the precursor 45S rRNA and promotes the efficiency and accuracy of pre-rRNA processing. Intriguingly, disrupting HID2 in Arabidopsis appears to impair the integrity of 27SB, a key pre-rRNA intermediate that generates 25S and 5.8S rRNA and is known to be vital for the synthesis of the 60S large ribosomal subunit and also produces an imbalanced ribosome profile. Finally, we demonstrate that the antisense-box of HID2 is both functionally essential and highly conserved in eukaryotes. Overall, our study reveals the vital and possibly conserved role of a snoRNA in monitoring the efficiency of pre-rRNA processing during ribosome biogenesis.
Collapse
|
34
|
Lehti-Shiu MD, Panchy N, Wang P, Uygun S, Shiu SH. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:3-20. [PMID: 27522016 DOI: 10.1016/j.bbagrm.2016.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Nicholas Panchy
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Peipei Wang
- Department of Plant Biology, East Lansing, MI 48824, USA
| | - Sahra Uygun
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, East Lansing, MI 48824, USA; The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
35
|
Wendte JM, Pikaard CS. The RNAs of RNA-directed DNA methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:140-148. [PMID: 27521981 DOI: 10.1016/j.bbagrm.2016.08.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
Abstract
RNA-directed chromatin modification that includes cytosine methylation silences transposable elements in both plants and mammals, contributing to genome defense and stability. In Arabidopsis thaliana, most RNA-directed DNA methylation (RdDM) is guided by small RNAs derived from double-stranded precursors synthesized at cytosine-methylated loci by nuclear multisubunit RNA Polymerase IV (Pol IV), in close partnership with the RNA-dependent RNA polymerase, RDR2. These small RNAs help keep transposons transcriptionally inactive. However, if transposons escape silencing, and are transcribed by multisubunit RNA polymerase II (Pol II), their mRNAs can be recognized and degraded, generating small RNAs that can also guide initial DNA methylation, thereby enabling subsequent Pol IV-RDR2 recruitment. In both pathways, the small RNAs find their target sites by interacting with longer noncoding RNAs synthesized by multisubunit RNA Polymerase V (Pol V). Despite a decade of progress, numerous questions remain concerning the initiation, synthesis, processing, size and features of the RNAs that drive RdDM. Here, we review recent insights, questions and controversies concerning RNAs produced by Pols IV and V, and their functions in RdDM. We also provide new data concerning Pol V transcript 5' and 3' ends. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Jered M Wendte
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, 915 E. Third Street, Bloomington, IN 47405, USA
| | - Craig S Pikaard
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, 915 E. Third Street, Bloomington, IN 47405, USA; Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|