1
|
Ye YY, Liu DD, Tang RJ, Gong Y, Zhang CY, Mei P, Ma CL, Chen JD. Bulked Segregant RNA-Seq Reveals Different Gene Expression Patterns and Mutant Genes Associated with the Zigzag Pattern of Tea Plants ( Camellia sinensis). Int J Mol Sci 2024; 25:4549. [PMID: 38674133 PMCID: PMC11049935 DOI: 10.3390/ijms25084549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The unique zigzag-patterned tea plant is a rare germplasm resource. However, the molecular mechanism behind the formation of zigzag stems remains unclear. To address this, a BC1 genetic population of tea plants with zigzag stems was studied using histological observation and bulked segregant RNA-seq. The analysis revealed 1494 differentially expressed genes (DEGs) between the upright and zigzag stem groups. These DEGs may regulate the transduction and biosynthesis of plant hormones, and the effects on the phenylpropane biosynthesis pathways may cause the accumulation of lignin. Tissue sections further supported this finding, showing differences in cell wall thickness between upright and curved stems, potentially due to lignin accumulation. Additionally, 262 single-nucleotide polymorphisms (SNPs) across 38 genes were identified as key SNPs, and 5 genes related to zigzag stems were identified through homologous gene function annotation. Mutations in these genes may impact auxin distribution and content, resulting in the asymmetric development of vascular bundles in curved stems. In summary, we identified the key genes associated with the tortuous phenotype by using BSR-seq on a BC1 population to minimize genetic background noise.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chun-Lei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.-Y.Y.); (D.-D.L.); (R.-J.T.); (Y.G.); (C.-Y.Z.); (P.M.)
| | - Jie-Dan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.-Y.Y.); (D.-D.L.); (R.-J.T.); (Y.G.); (C.-Y.Z.); (P.M.)
| |
Collapse
|
2
|
Traas J. Morphogenesis at the shoot meristem. C R Biol 2023; 345:129-148. [PMID: 36847122 DOI: 10.5802/crbiol.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Shoot apical meristems are populations of stem cells which initiate the aerial parts of higher plants. Work during the last decades has revealed a complex network of molecular regulators, which control both meristem maintenance and the production of different types of organs. The behavior of this network in time and space is defined by the local interactions between regulators and also involves hormonal regulation. In particular, auxin and cytokinin are intimately implicated in the coordination of gene expression patterns. To control growth patterns at the shoot meristem the individual components of the network influence directions and rates of cell growth. This requires interference with the mechanical properties of the cells. How this complex multiscale process, characterized by multiple feedbacks, is controlled remains largely an open question. Fortunately, genetics, live imaging, computational modelling and a number of other recently developed tools offer interesting albeit challenging perspectives.
Collapse
|
3
|
Cheng F, Song M, Zhang M, Cheng C, Chen J, Lou Q. A SNP mutation in the CsCLAVATA1 leads to pleiotropic variation in plant architecture and fruit morphogenesis in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111397. [PMID: 35902027 DOI: 10.1016/j.plantsci.2022.111397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Plant architectures is predominantly determined by branching pattern, internode elongation, phyllotaxis, shoot determinacy and reproductive organs. Domestication or improvement of this critical agronomic trait played an important role in the breakthrough of crop yield. Here, we identified a mutant with fasciated plant architecture, named fas, from an ethyl methanesulfonate (EMS) induced mutant population in cucumber. The mutant exhibited abnormal phyllotaxy, flattened main stem, increased number of floral organs, and significantly shorter and thicker fruits. However, the molecular mechanism conferring this pleiotropic effect remains unknown. Using a map-based cloning strategy, we isolated the gene CsaV3_3G045960, encoding a leucine-rich repeat receptor-like kinase, a putative direct homolog of the Arabidopsis CLAVATA1 protein referred to as CsCLV1. Endogenous hormone assays showed that IAA and GA3 levels in fas stems and ovaries were significantly reduced. Conformably, RNA-seq analysis showed that CsCLV1 regulates cucumber stem and ovary development by coordinating hormones and transcription factors. Our results contribute to the understanding of the function of CsCLV1 throughout the growth cycle, provide new evidence that the CLV signaling system is functionally conserved in Cucurbitaceae.
Collapse
Affiliation(s)
- Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Hao P, Lin B, Ren Y, Hu H, Xue B, Huang L, Hua S. Auxin-regulated timing of transition from vegetative to reproductive growth in rapeseed ( Brassica napus L.) under different nitrogen application rates. FRONTIERS IN PLANT SCIENCE 2022; 13:927662. [PMID: 36161032 PMCID: PMC9501695 DOI: 10.3389/fpls.2022.927662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Accelerating the differentiation of floral meristem (FM) from shoot apical meristems (SAM) which determines the conversion from vegetative to reproductive growth is of great significance for the production of rapeseed (Brassica napus L.). In this research, the mechanisms of different nitrogen (N) application rates (low N, N1; normal N, N2; and high N, N3) on different FM development stages triggering the regulation of FM differentiation genes through the auxin biosynthetic and signal transduction were investigated. We found that the stage of FM differentiation, which was identified through a stereomicroscope and scanning electron microscope, came 4 and 7 days earlier under high N rate than under normal and low N levels, with the seed yield increased by 11.1 and 22.6%, respectively. Analysis of the auxin and its derivatives contents showed that the main biosynthesis way of auxin was the indole acetaldehyde oxime (IAOx) pathway, with 3-Indole acetonitrile dramatically accumulated during FM differentiation. At the same time, an obvious decrease of IAA contents at each FM differentiation stage was detected, and then gradually rose. Results of the expression of genes involved in auxin biosynthesis, auxin signaling transduction, and FM identification under five FM differentiation stages and three nitrogen application rates showed that genes involved in auxin biosynthesis were regulated before the FM differentiation stage, while the regulation of FM identity genes appeared mainly at the middle and later periods of the five stages, and the regulation level of genes varied under different N rates. Taken together, a high nitrogen rate could accelerate the initiation of FM differentiation, and auxin involved a lot in this regulation.
Collapse
Affiliation(s)
- Pengfei Hao
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baogang Lin
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yun Ren
- Huzhou Agricultural Science and Technology Development Center, Huzhou, China
| | - Hao Hu
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Bowen Xue
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lan Huang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuijin Hua
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
5
|
Moulia B, Badel E, Bastien R, Duchemin L, Eloy C. The shaping of plant axes and crowns through tropisms and elasticity: an example of morphogenetic plasticity beyond the shoot apical meristem. THE NEW PHYTOLOGIST 2022; 233:2354-2379. [PMID: 34890051 DOI: 10.1111/nph.17913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Shoot morphogenetic plasticity is crucial to the adaptation of plants to their fluctuating environments. Major insights into shoot morphogenesis have been compiled studying meristems, especially the shoot apical meristem (SAM), through a methodological effort in multiscale systems biology and biophysics. However, morphogenesis at the SAM is robust to environmental changes. Plasticity emerges later on during post-SAM development. The purpose of this review is to show that multiscale systems biology and biophysics is insightful for the shaping of the whole plant as well. More specifically, we review the shaping of axes and crowns through tropisms and elasticity, combining the recent advances in morphogenetic control using physical cues and by genes. We focus mostly on land angiosperms, but with growth habits ranging from small herbs to big trees. We show that generic (universal) morphogenetic processes have been identified, revealing feedforward and feedback effects of global shape on the local morphogenetic process. In parallel, major advances have been made in the analysis of the major genes involved in shaping axes and crowns, revealing conserved genic networks among angiosperms. Then, we show that these two approaches are now starting to converge, revealing exciting perspectives.
Collapse
Affiliation(s)
- Bruno Moulia
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - Eric Badel
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - Renaud Bastien
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
- INSERM U1284, Center for Research and Interdisciplinarity (CRI), Université de Paris, F-75004, Paris, France
| | - Laurent Duchemin
- Physique et Mécanique des Milieux Hétérogenes, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Christophe Eloy
- Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, F-13013, Marseille, France
| |
Collapse
|
6
|
Traas J. Organogenesis at the Shoot Apical Meristem. PLANTS 2018; 8:plants8010006. [PMID: 30597849 PMCID: PMC6358984 DOI: 10.3390/plants8010006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
Abstract
Lateral organ initiation at the shoot apical meristem involves complex changes in growth rates and directions, ultimately leading to the formation of leaves, stems and flowers. Extensive molecular analysis identifies auxin and downstream transcriptional regulation as major elements in this process. This molecular regulatory network must somehow interfere with the structural elements of the cell, in particular the cell wall, to induce specific morphogenetic events. The cell wall is composed of a network of rigid cellulose microfibrils embedded in a matrix composed of water, polysaccharides such as pectins and hemicelluloses, proteins, and ions. I will discuss here current views on how auxin dependent pathways modulate wall structure to set particular growth rates and growth directions. This involves complex feedbacks with both the cytoskeleton and the cell wall.
Collapse
Affiliation(s)
- Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon CEDEX O7, France.
| |
Collapse
|