1
|
Riehl JFL, Cole CT, Morrow CJ, Barker HL, Bernhardsson C, Rubert‐Nason K, Ingvarsson PK, Lindroth RL. Genomic and transcriptomic analyses reveal polygenic architecture for ecologically important traits in aspen ( Populus tremuloides Michx.). Ecol Evol 2023; 13:e10541. [PMID: 37780087 PMCID: PMC10534199 DOI: 10.1002/ece3.10541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Intraspecific genetic variation in foundation species such as aspen (Populus tremuloides Michx.) shapes their impact on forest structure and function. Identifying genes underlying ecologically important traits is key to understanding that impact. Previous studies, using single-locus genome-wide association (GWA) analyses to identify candidate genes, have identified fewer genes than anticipated for highly heritable quantitative traits. Mounting evidence suggests that polygenic control of quantitative traits is largely responsible for this "missing heritability" phenomenon. Our research characterized the genetic architecture of 30 ecologically important traits using a common garden of aspen through genomic and transcriptomic analyses. A multilocus association model revealed that most traits displayed a highly polygenic architecture, with most variation explained by loci with small effects (likely below the detection levels of single-locus GWA methods). Consistent with a polygenic architecture, our single-locus GWA analyses found only 38 significant SNPs in 22 genes across 15 traits. Next, we used differential expression analysis on a subset of aspen genets with divergent concentrations of salicinoid phenolic glycosides (key defense traits). This complementary method to traditional GWA discovered 1243 differentially expressed genes for a polygenic trait. Soft clustering analysis revealed three gene clusters (241 candidate genes) involved in secondary metabolite biosynthesis and regulation. Our work reveals that ecologically important traits governing higher-order community- and ecosystem-level attributes of a foundation forest tree species have complex underlying genetic structures and will require methods beyond traditional GWA analyses to unravel.
Collapse
Affiliation(s)
| | | | - Clay J. Morrow
- Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Hilary L. Barker
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Present address:
Office of Student SuccessWisconsin Technical College SystemMadisonWisconsinUSA
| | - Carolina Bernhardsson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
- Present address:
Department of Organismal Biology, Center for Evolutionary BiologyUppsala UniversityUppsalaSweden
| | - Kennedy Rubert‐Nason
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Present address:
Division of Natural SciencesUniversity of Maine at Fort KentFort KentMaineUSA
| | - Pär K. Ingvarsson
- Department of Plant BiologySwedish University of Agricultural Sciences, Uppsala BioCenterUppsalaSweden
| | | |
Collapse
|
2
|
Zhao H, Xu D, Tian T, Kong F, Lin K, Gan S, Zhang H, Li G. Molecular and functional dissection of EARLY-FLOWERING 3 (ELF3) and ELF4 in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110786. [PMID: 33487361 DOI: 10.1016/j.plantsci.2020.110786] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/31/2020] [Accepted: 11/28/2020] [Indexed: 05/18/2023]
Abstract
The circadian clock is an endogenous timekeeper system that generates biological rhythms of approximately 24 h in most organisms. EARLY FLOWERING 3 (ELF3) and ELF4 were initially identified as negative regulators of flowering time in Arabidopsis thaliana. They were then found to play crucial roles in the circadian clock by integrating environmental light and ambient temperature signals and transmitting them to the central oscillator, thereby regulating various downstream cellular and physiological processes. At dusk, ELF3 acts as a scaffold, interacting with ELF4 and the transcription factor LUX ARRHYTHMO (PHYTOCLOCK1) to form an EVENING COMPLEX (EC). This complex represses the transcription of multiple circadian clock-related genes, thus inhibiting hypocotyl elongation and flowering. Subsequent studies have expanded knowledge about the regulatory roles of the EC in thermomorphogenesis and shade responses. In addition, ELF3 and ELF4 also form multiple complexes with other proteins including chromatin remodeling factors, histone deacetylase, and transcription factors, thus enabling the transcriptional repression of diverse targets. In this review, we summarize the recent advances in elucidating the regulatory mechanisms of ELF3 and ELF4 in plants and discuss directions for future research on ELF3 and ELF4.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China; College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Di Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Tian Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Fanying Kong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Ke Lin
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China; Department of Biology Science and Technology, Taishan University, Tai'an, 271000, China
| | - Shuo Gan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Haisen Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China.
| |
Collapse
|