1
|
Ablazov A, Jamil M, Haider I, Wang JY, Melino V, Maghrebi M, Vigani G, Liew KX, Lin P, Chen GE, Kuijer HNJ, Berqdar L, Mazzarella T, Fiorilli V, Lanfranco L, Zheng X, Dai N, Lai M, Caroline Hsing Y, Tester M, Blilou I, Al‐Babili S. Zaxinone Synthase overexpression modulates rice physiology and metabolism, enhancing nutrient uptake, growth and productivity. PLANT, CELL & ENVIRONMENT 2025; 48:2615-2629. [PMID: 38924092 PMCID: PMC11893931 DOI: 10.1111/pce.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
The rice Zaxinone Synthase (ZAS) gene encodes a carotenoid cleavage dioxygenase (CCD) that forms the apocarotenoid growth regulator zaxinone in vitro. Here, we generated and characterized constitutive ZAS-overexpressing rice lines, to better understand ZAS role in determining zaxinone content and regulating growth and architecture. ZAS overexpression enhanced endogenous zaxinone level, promoted root growth and increased the number of productive tillers, leading to about 30% higher grain yield per plant. Hormone analysis revealed a decrease in strigolactone (SL) content, which we confirmed by rescuing the high-tillering phenotype through application of a SL analogue. Metabolomics analysis revealed that ZAS overexpressing plants accumulate higher amounts of monosaccharide sugars, in line with transcriptome analysis. Moreover, transgenic plants showed higher carbon (C) assimilation rate and elevated root phosphate, nitrate and sulphate level, enhancing the tolerance towards low phosphate (Pi). Our study confirms ZAS as an important determinant of rice growth and architecture and shows that ZAS regulates hormone homoeostasis and a combination of physiological processes to promote growth and grain yield, which makes this gene an excellent candidate for sustainable crop improvement.
Collapse
Affiliation(s)
- Abdugaffor Ablazov
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Muhammad Jamil
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Imran Haider
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and BreedingUniversity of Bari Aldo MoroBariItaly
| | - Jian You Wang
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Vanessa Melino
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The Salt Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Moez Maghrebi
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Gianpiero Vigani
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Kit Xi Liew
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Pei‐Yu Lin
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Guan‐Ting Erica Chen
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Hendrik N. J. Kuijer
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Lamis Berqdar
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Teresa Mazzarella
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Valentina Fiorilli
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Luisa Lanfranco
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Xiongjie Zheng
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Nai‐Chiang Dai
- Crop Science DivisionTaiwan Agricultural Research InstituteTaichungTaiwan
| | - Ming‐Hsin Lai
- Crop Science DivisionTaiwan Agricultural Research InstituteTaichungTaiwan
| | | | - Mark Tester
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The Salt Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Ikram Blilou
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Salim Al‐Babili
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
2
|
Beltrán J, Wurtzel ET. Carotenoids: resources, knowledge, and emerging tools to advance apocarotenoid research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112298. [PMID: 39442633 DOI: 10.1016/j.plantsci.2024.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Carotenoids are a large class of isoprenoid compounds which are biosynthesized by plants, algae, along with certain fungi, bacteria and insects. In plants, carotenoids provide crucial functions in photosynthesis and photoprotection. Furthermore, carotenoids also serve as precursors to apocarotenoids, which are derived through enzymatic and non-enzymatic cleavage reactions. Apocarotenoids encompass a diverse set of compounds, including hormones, growth regulators, and signaling molecules which play vital roles in pathways associated with plant development, stress responses, and plant-organismic interactions. Regulation of carotenoid biosynthesis indirectly influences the formation of apocarotenoids and bioactive effects on target pathways. Recent discovery of a plethora of new bioactive apocarotenoids across kingdoms has increased interest in expanding knowledge of the breadth of apocarotenoid function and regulation. In this review, we provide insights into the regulation of carotenogenesis, specifically linked to the biosynthesis of apocarotenoid precursors. We highlight plant studies, including useful heterologous platforms and synthetic biology tools, which hold great value in expanding discoveries, knowledge and application of bioactive apocarotenoids for crop improvement and human health. Moreover, we discuss how this field has recently flourished with the discovery of diverse functions of apocarotenoids, thereby prompting us to propose new directions for future research.
Collapse
Affiliation(s)
- Jesús Beltrán
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA.
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, City University of New York (CUNY), Bronx, NY, United States; Graduate School and University Center, CUNY, New York, NY, United States.
| |
Collapse
|
3
|
Al Saleh N, Alimi LO, Jamil M, Qutub S, Berqdar L, Al-Babili S, Khashab NM. Inhibition of the Germination of Root Parasitic Plants by Zeolitic Imidazolate Framework-8. Chempluschem 2025; 90:e202400457. [PMID: 39307838 DOI: 10.1002/cplu.202400457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Indexed: 11/02/2024]
Abstract
Crystalline ZIF-8 (C-ZIF-8) and amorphous ZIF-8 (Am-ZIF-8) were prepared and investigated to control the germination of Striga hermonthica, a root parasitic plant, which threatens cereal crops production particularly in sub-Saharan Africa. We have demonstrated that Am-ZIF-8 shows a better performance than C-ZIF-8 in inhibiting Striga seeds germination. This efficient performance of Am-ZIF-8 materials can be attributed to the incomplete deprotonation of 2 methylimidazole (2MIM) during amorphization, leading to the presence of unsaturated Zn-N coordination with the uncoordinated -NH groups available to undergo hydrogen bonding with the strigolactone analog GR24 forming a more stable Am-ZIF-8⋅⋅⋅GR24 hydrogen bonded network. We further established that application of ZIF-8 materials generally has no adverse effects on the growth and quality of rice crops.
Collapse
Affiliation(s)
- Nouf Al Saleh
- Smart Hybrid Materials Laboratory (SHMs), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Bioengineering Institute, Health Sector, King Abdul Aziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials Laboratory (SHMs), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Jamil
- The Bio Actives Lab. Center for Desert Agriculture, Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Somayah Qutub
- Smart Hybrid Materials Laboratory (SHMs), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lamis Berqdar
- The Bio Actives Lab. Center for Desert Agriculture, Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Salim Al-Babili
- The Bio Actives Lab. Center for Desert Agriculture, Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Mazzarella T, Chialva M, de Souza LP, Wang JY, Votta C, Tiozon R, Vaccino P, Salvioli di Fossalunga A, Sreenivasulu N, Asami T, Fernie AR, Al-Babili S, Lanfranco L, Fiorilli V. Effect of exogenous treatment with zaxinone and its mimics on rice root microbiota across different growth stages. Sci Rep 2024; 14:31374. [PMID: 39732893 PMCID: PMC11682185 DOI: 10.1038/s41598-024-82833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Enhancing crops productivity to ensure food security is one of the major challenges encountering agriculture today. A promising solution is the use of biostimulants, which encompass molecules that enhance plant fitness, growth, and productivity. The regulatory metabolite zaxinone and its mimics (MiZax3 and MiZax5) showed promising results in improving the growth and yield of several crops. Here, the impact of their exogenous application on soil and rice root microbiota was investigated. Plants grown in native paddy soil were treated with zaxinone, MiZax3, and MiZax5 and the composition of bacterial and fungal communities in soil, rhizosphere, and endosphere at the tillering and the milky stage was assessed. Furthermore, shoot metabolome profile and nutrient content of the seeds were evaluated. Results show that treatment with zaxinone and its mimics predominantly influenced the root endosphere prokaryotic community, causing a partial depletion of plant-beneficial microbes at the tillering stage, followed by a recovery of the prokaryotic community structure during the milky stage. Our study provides new insights into the role of zaxinone and MiZax in the interplay between rice and its root-associated microbiota and paves the way for their practical application in the field as ecologically friendly biostimulants to enhance crop productivity.
Collapse
Affiliation(s)
- Teresa Mazzarella
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy
| | - Matteo Chialva
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy
| | - Rhowell Tiozon
- Consumer-driven Grain Quality and Nutrition, Rice Breeding Innovation Department, International Rice Research Institute, Los Baños, Philippines
| | - Patrizia Vaccino
- Council for Agricultural Research and Economics CREA-CI,-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, Vercelli, 13100, VC, Italy
| | | | - Nese Sreenivasulu
- Consumer-driven Grain Quality and Nutrition, Rice Breeding Innovation Department, International Rice Research Institute, Los Baños, Philippines
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 4700, 23955-6900, Kingdom of Saudi Arabia.
- Centre of Excellence for Sustainable Food Security, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy.
| |
Collapse
|
5
|
Kuijer HNJ, Wang JY, Bougouffa S, Abrouk M, Jamil M, Incitti R, Alam I, Balakrishna A, Alvarez D, Votta C, Chen GTE, Martínez C, Zuccolo A, Berqdar L, Sioud S, Fiorilli V, de Lera AR, Lanfranco L, Gojobori T, Wing RA, Krattinger SG, Gao X, Al-Babili S. Chromosome-scale pearl millet genomes reveal CLAMT1b as key determinant of strigolactone pattern and Striga susceptibility. Nat Commun 2024; 15:6906. [PMID: 39134551 PMCID: PMC11319436 DOI: 10.1038/s41467-024-51189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
The yield of pearl millet, a resilient cereal crop crucial for African food security, is severely impacted by the root parasitic weed Striga hermonthica, which requires host-released hormones, called strigolactones (SLs), for seed germination. Herein, we identify four SLs present in the Striga-susceptible line SOSAT-C88-P10 (P10) but absent in the resistant 29Aw (Aw). We generate chromosome-scale genome assemblies, including four gapless chromosomes for each line. The Striga-resistant Aw lacks a 0.7 Mb genome segment containing two putative CARLACTONOIC ACID METHYLTRANSFERASE1 (CLAMT1) genes, which may contribute to SL biosynthesis. Functional assays show that P10CLAMT1b produces the SL-biosynthesis intermediate methyl carlactonoate (MeCLA) and that MeCLA is the precursor of P10-specific SLs. Screening a diverse pearl millet panel confirms the pivotal role of the CLAMT1 section for SL diversity and Striga susceptibility. Our results reveal a reason for Striga susceptibility in pearl millet and pave the way for generating resistant lines through marker-assisted breeding or direct genetic modification.
Collapse
Affiliation(s)
- Hendrik N J Kuijer
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Michael Abrouk
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Roberto Incitti
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Derry Alvarez
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, University of Torino; Viale Mattioli 25, Torino, 10125, Italy
| | - Guan-Ting Erica Chen
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Claudio Martínez
- Universidade de Vigo, Facultade de Química and CINBIO, 36310, Vigo, Spain
| | - Andrea Zuccolo
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Institute of Crop Science, Sant'Anna School of Advanced Studies, Pisa, 56127, Italy
| | - Lamis Berqdar
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Salim Sioud
- Analytical Chemistry Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino; Viale Mattioli 25, Torino, 10125, Italy
| | - Angel R de Lera
- Universidade de Vigo, Facultade de Química and CINBIO, 36310, Vigo, Spain
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino; Viale Mattioli 25, Torino, 10125, Italy
| | - Takashi Gojobori
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Rod A Wing
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Simon G Krattinger
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
6
|
Wang JY, Braguy J, Al-Babili S. Does zaxinone counteract strigolactones in shaping rice architecture? PLANT SIGNALING & BEHAVIOR 2023; 18:2184127. [PMID: 36855265 PMCID: PMC9980470 DOI: 10.1080/15592324.2023.2184127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The cleavage of plant carotenoids leads to apocarotenoids, a group of metabolites including precursors of the hormones strigolactones (SLs) and abscisic acid, regulatory and signaling molecules. Zaxinone is a recently discovered apocarotenoid growth regulator that improves growth and suppress SL biosynthesis in rice (Oryza sativa). To test if zaxinone also counteracts the growth regulatory effects of SLs in rice, we co-supplied zaxinone and the synthetic SL analog rac-GR24 to the rice SL-deficient DWARF17 (d17) mutant. Results showed that co-application of GR24 and zaxinone still rescued d17 phenotype, indicating that zaxinone and GR24 act independently in regulating root and shoot growth and development in rice.
Collapse
Affiliation(s)
- Jian You Wang
- The BioActivesLaboratory Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Justine Braguy
- The BioActivesLaboratory Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Salim Al-Babili
- The BioActivesLaboratory Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| |
Collapse
|
7
|
Wang JY, Jamil M, AlOtaibi TS, Abdelaziz ME, Ota T, Ibrahim OH, Berqdar L, Asami T, Ahmed Mousa MA, Al-Babili S. Zaxinone mimics (MiZax) efficiently promote growth and production of potato and strawberry plants under desert climate conditions. Sci Rep 2023; 13:17438. [PMID: 37838798 PMCID: PMC10576822 DOI: 10.1038/s41598-023-42478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/11/2023] [Indexed: 10/16/2023] Open
Abstract
Climate changes and the rapid expanding human population have become critical concerns for global food security. One of the promising solutions is the employment of plant growth regulators (PGRs) for increasing crop yield and overcoming adverse growth conditions, such as desert climate. Recently, the apocarotenoid zaxinone and its two mimics (MiZax3 and MiZax5) have shown a promising growth-promoting activity in cereals and vegetable crops under greenhouse and field conditions. Herein, we further investigated the effect of MiZax3 and MiZax5, at different concentrations (5 and 10 µM in 2021; 2.5 and 5 µM in 2022), on the growth and yield of the two valuable vegetable crops, potato and strawberry, in the Kingdom of Saudi of Arabia. Application of both MiZax significantly increased plant agronomic traits, yield components and total yield, in five independent field trials from 2021 to 2022. Remarkably, the amount of applied MiZax was far less than humic acid, a widely applied commercial compound used here for comparison. Hence, our results indicate that MiZax are very promising PGRs that can be applied to promote the growth and yield of vegetable crops even under desert conditions and at relatively low concentrations.
Collapse
Affiliation(s)
- Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Turki S AlOtaibi
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University (KAU), 21589, Jeddah, Saudi Arabia
| | - Mohamed E Abdelaziz
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- The National Research and Development Center for Sustainable Agriculture (Estidamah), Riyadh, Kingdom of Saudi Arabia
| | - Tsuyoshi Ota
- Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Omer H Ibrahim
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University (KAU), 21589, Jeddah, Saudi Arabia
- Department of Ornamental Crops, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Lamis Berqdar
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Tadao Asami
- Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Magdi Ali Ahmed Mousa
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University (KAU), 21589, Jeddah, Saudi Arabia
- Department of Vegetable Crops, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia.
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia.
| |
Collapse
|
8
|
Pinit S, Ariyakulkiat L, Chaiwanon J. Rice straw-derived smoke water promotes rice root growth under phosphorus deficiency by modulating oxidative stress and photosynthetic gene expression. Sci Rep 2023; 13:14802. [PMID: 37684292 PMCID: PMC10491667 DOI: 10.1038/s41598-023-41987-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
Plant-derived smoke has been shown to promote plant growth and seed germination, but its roles and mechanisms in response to nutrient deficiency stress remain unclear. Plants respond to phosphorus (P) deficiency by undergoing morphological, physiological, and transcriptional changes in order to improve nutrient uptake efficiency. Here, we showed that rice straw-derived smoke water could promote root growth in rice (Oryza sativa cv. Nipponbare) grown under P-sufficient and P-deficient conditions. Transcriptome analysis of the root tissues identified 1309 genes up-regulated and 1311 genes down-regulated by smoke water under P-deficient conditions. The GO terms 'glutathione transferase activity' and 'photosynthesis-light reaction' were found to be significantly enriched among the genes that were up- and down-regulated by smoke water, respectively. Biochemical analysis showed that smoke water reduced P-deficient-induced accumulation of H2O2 and malondialdehyde (MDA), a lipid peroxidation marker, reduced sucrose contents, but increased Fe accumulation. Furthermore, smoke water suppressed the expression of strigolactone biosynthesis genes, which were strongly induced by P deficiency as an adaptive strategy to improve root P uptake. These results revealed a potential mechanism by which smoke water promotes root growth and interacts with P deficiency-induced transcriptional regulation to mitigate P deficiency stress in rice.
Collapse
Affiliation(s)
- Sompop Pinit
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Lalichat Ariyakulkiat
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Juthamas Chaiwanon
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
9
|
Jamil M, Lin PY, Berqdar L, Wang JY, Takahashi I, Ota T, Alhammad N, Chen GTE, Asami T, Al-Babili S. New Series of Zaxinone Mimics (MiZax) for Fundamental and Applied Research. Biomolecules 2023; 13:1206. [PMID: 37627271 PMCID: PMC10452442 DOI: 10.3390/biom13081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The apocarotenoid zaxinone is a recently discovered regulatory metabolite required for proper rice growth and development. In addition, zaxinone and its two mimics (MiZax3 and MiZax5) were shown to have a remarkable growth-promoting activity on crops and a capability to reduce infestation by the root parasitic plant Striga through decreasing strigolactone (SL) production, suggesting their potential for application in agriculture and horticulture. In the present study, we developed a new series of MiZax via structural modification of the two potent zaxinone mimics (MiZax3 and MiZax5) and evaluated their effect on plant growth and Striga infestation. In general, the structural modifications to MiZax3 and MiZax5 did not additionally improve their overall performance but caused an increase in certain activities. In conclusion, MiZax5 and especially MiZax3 remain the likely most efficient zaxinone mimics for controlling Striga infestation.
Collapse
Affiliation(s)
- Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
| | - Pei-Yu Lin
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lamis Berqdar
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
| | - Ikuo Takahashi
- Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan; (I.T.); (T.O.); (T.A.)
| | - Tsuyoshi Ota
- Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan; (I.T.); (T.O.); (T.A.)
| | - Noor Alhammad
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
| | - Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Tadao Asami
- Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan; (I.T.); (T.O.); (T.A.)
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
10
|
Ablazov A, Votta C, Fiorilli V, Wang JY, Aljedaani F, Jamil M, Balakrishna A, Balestrini R, Liew KX, Rajan C, Berqdar L, Blilou I, Lanfranco L, Al-Babili S. ZAXINONE SYNTHASE 2 regulates growth and arbuscular mycorrhizal symbiosis in rice. PLANT PHYSIOLOGY 2023; 191:382-399. [PMID: 36222582 PMCID: PMC9806602 DOI: 10.1093/plphys/kiac472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/09/2022] [Indexed: 05/24/2023]
Abstract
Carotenoid cleavage, catalyzed by CAROTENOID CLEAVAGE DIOXYGENASEs (CCDs), provides signaling molecules and precursors of plant hormones. Recently, we showed that zaxinone, a apocarotenoid metabolite formed by the CCD ZAXINONE SYNTHASE (ZAS), is a growth regulator required for normal rice (Oryza sativa) growth and development. The rice genome encodes three OsZAS homologs, called here OsZAS1b, OsZAS1c, and OsZAS2, with unknown functions. Here, we investigated the enzymatic activity, expression pattern, and subcellular localization of OsZAS2 and generated and characterized loss-of-function CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and associated protein 9)-Oszas2 mutants. We show that OsZAS2 formed zaxinone in vitro. OsZAS2 was predominantly localized in plastids and mainly expressed under phosphate starvation. Moreover, OsZAS2 expression increased during mycorrhization, specifically in arbuscule-containing cells. Oszas2 mutants contained lower zaxinone content in roots and exhibited reduced root and shoot biomass, fewer tillers, and higher strigolactone (SL) levels. Exogenous zaxinone application repressed SL biosynthesis and partially rescued the growth retardation of the Oszas2 mutant. Consistent with the OsZAS2 expression pattern, Oszas2 mutants displayed a lower frequency of arbuscular mycorrhizal colonization. In conclusion, OsZAS2 is a zaxinone-forming enzyme that, similar to the previously reported OsZAS, determines rice growth, architecture, and SL content, and is required for optimal mycorrhization.
Collapse
Affiliation(s)
| | | | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10125, Italy
| | - Jian You Wang
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST), The BioActives Lab, Thuwal, 23955-15 6900, Saudi Arabia
| | - Fatimah Aljedaani
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Jamil
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST), The BioActives Lab, Thuwal, 23955-15 6900, Saudi Arabia
| | - Aparna Balakrishna
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST), The BioActives Lab, Thuwal, 23955-15 6900, Saudi Arabia
| | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Turin 10135, Italy
| | - Kit Xi Liew
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST), The BioActives Lab, Thuwal, 23955-15 6900, Saudi Arabia
| | - Chakravarthy Rajan
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST), The BioActives Lab, Thuwal, 23955-15 6900, Saudi Arabia
| | - Lamis Berqdar
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST), The BioActives Lab, Thuwal, 23955-15 6900, Saudi Arabia
| | - Ikram Blilou
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10125, Italy
| | | |
Collapse
|
11
|
Wang JY, Fiorilli V, Lanfranco L, Asami T, Al-Babili S. Editorial: Specialized metabolites manipulating organismal behaviors and rhizospheric communications. FRONTIERS IN PLANT SCIENCE 2023; 14:1197058. [PMID: 37152140 PMCID: PMC10158978 DOI: 10.3389/fpls.2023.1197058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Affiliation(s)
- Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- *Correspondence: Salim Al-Babili,
| |
Collapse
|
12
|
Salem MA, Wang JY, Al-Babili S. Metabolomics of plant root exudates: From sample preparation to data analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1062982. [PMID: 36561464 PMCID: PMC9763704 DOI: 10.3389/fpls.2022.1062982] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Plants release a set of chemical compounds, called exudates, into the rhizosphere, under normal conditions and in response to environmental stimuli and surrounding soil organisms. Plant root exudates play indispensable roles in inhibiting the growth of harmful microorganisms, while also promoting the growth of beneficial microbes and attracting symbiotic partners. Root exudates contain a complex array of primary and specialized metabolites. Some of these chemicals are only found in certain plant species for shaping the microbial community in the rhizosphere. Comprehensive understanding of plant root exudates has numerous applications from basic sciences to enhancing crop yield, production of stress-tolerant crops, and phytoremediation. This review summarizes the metabolomics workflow for determining the composition of root exudates, from sample preparation to data acquisition and analysis. We also discuss recent advances in the existing analytical methods and future perspectives of metabolite analysis.
Collapse
Affiliation(s)
- Mohamed A. Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
13
|
Votta C, Fiorilli V, Haider I, Wang JY, Balestrini R, Petřík I, Tarkowská D, Novák O, Serikbayeva A, Bonfante P, Al‐Babili S, Lanfranco L. Zaxinone synthase controls arbuscular mycorrhizal colonization level in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1688-1700. [PMID: 35877598 PMCID: PMC9543690 DOI: 10.1111/tpj.15917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 05/12/2023]
Abstract
The Oryza sativa (rice) carotenoid cleavage dioxygenase OsZAS was described to produce zaxinone, a plant growth-promoting apocarotenoid. A zas mutant line showed reduced arbuscular mycorrhizal (AM) colonization, but the mechanisms underlying this behavior are unknown. Here, we investigated how OsZAS and exogenous zaxinone treatment regulate mycorrhization. Micromolar exogenous supply of zaxinone rescued root growth but not the mycorrhizal defects of the zas mutant, and even reduced mycorrhization in wild-type and zas genotypes. The zas line did not display the increase in the level of strigolactones (SLs) that was observed in wild-type plants at 7 days post-inoculation with AM fungus. Moreover, exogenous treatment with the synthetic SL analog GR24 rescued the zas mutant mycorrhizal phenotype, indicating that the lower AM colonization rate of zas is caused by a deficiency in SLs at the early stages of the interaction, and indicating that during this phase OsZAS activity is required to induce SL production, possibly mediated by the Dwarf14-Like (D14L) signaling pathway. OsZAS is expressed in arbuscule-containing cells, and OsPT11prom::OsZAS transgenic lines, where OsZAS expression is driven by the OsPT11 promoter active in arbusculated cells, exhibit increased mycorrhization compared with the wild type. Overall, our results show that the genetic manipulation of OsZAS activity in planta leads to a different effect on AM symbiosis from that of exogenous zaxinone treatment, and demonstrate that OsZAS influences the extent of AM colonization, acting as a component of a regulatory network that involves SLs.
Collapse
Affiliation(s)
- Cristina Votta
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10125Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10125Italy
| | - Imran Haider
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Raffaella Balestrini
- National Research CouncilInstitute for Sustainable Plant ProtectionTurin10135Italy
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of SciencePalacký University and Institute of Experimental Botany, The Czech Academy of SciencesOlomouc78371Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of SciencePalacký University and Institute of Experimental Botany, The Czech Academy of SciencesOlomouc78371Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of SciencePalacký University and Institute of Experimental Botany, The Czech Academy of SciencesOlomouc78371Czech Republic
| | - Akmaral Serikbayeva
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Paola Bonfante
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10125Italy
| | - Salim Al‐Babili
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Luisa Lanfranco
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10125Italy
| |
Collapse
|
14
|
Wang JY, Chen GTE, Jamil M, Braguy J, Sioud S, Liew KX, Balakrishna A, Al-Babili S. Protocol for characterizing strigolactones released by plant roots. STAR Protoc 2022; 3:101352. [PMID: 35620066 PMCID: PMC9127222 DOI: 10.1016/j.xpro.2022.101352] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The plant hormone strigolactones (SLs) are secreted by plant roots to act as rhizospheric signals. Here, we present a protocol for characterizing plant-released SLs. We first outline all necessary steps required for collection, processing, and analysis of plant root exudates using the C18 column for SL extraction, followed by liquid chromatography-mass spectrometry (LC-MS) for SL quantification. We then describe image processing by SeedQuant, an open-source artificial-intelligence-based software, for measuring the biological activity of SLs in inducing root parasitic plant seed germination. For complete details on the use and execution of this protocol, please refer to Wang et al. (2019) and Braguy et al. (2021).
Collapse
Affiliation(s)
- Jian You Wang
- The BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guan-Ting Erica Chen
- The BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Justine Braguy
- The BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salim Sioud
- Analytical Chemistry Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kit Xi Liew
- The BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
15
|
Wang JY, Jamil M, Hossain MG, Chen GTE, Berqdar L, Ota T, Blilou I, Asami T, Al-Solimani SJ, Mousa MAA, Al-Babili S. Evaluation of the Biostimulant Activity of Zaxinone Mimics (MiZax) in Crop Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:874858. [PMID: 35783933 PMCID: PMC9245435 DOI: 10.3389/fpls.2022.874858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Global food security is a critical concern that needs practical solutions to feed the expanding human population. A promising approach is the employment of biostimulants to increase crop production. Biostimulants include compounds that boost plant growth. Recently, mimics of zaxinone (MiZax) were shown to have a promising growth-promoting effect in rice (Oryza sativa). In this study, we investigated the effect of MiZax on the growth and yield of three dicot horticultural plants, namely, tomato (Solanum lycopersicum), capsicum (Capsicum annuum), and squash (Cucurbita pepo) in different growth environments, as well as on the growth and development of the monocot date palm (Phoenix dactylifera), an important crop in the Middle East. The application of MiZax significantly enhanced plant height, flower, and branch numbers, fruit size, and total fruit yield in independent field trials from 2020 to 2021. Importantly, the amount of applied MiZax was far less than that used with the commercial compound humic acid, a widely used biostimulant in horticulture. Our results indicate that MiZax have significant application potential to improve the performance and productivity of horticultural crops.
Collapse
Affiliation(s)
- Jian You Wang
- The Bio Actives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Jamil
- The Bio Actives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Md. Golap Hossain
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Guan-Ting Erica Chen
- The Bio Actives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lamis Berqdar
- The Bio Actives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tsuyoshi Ota
- Applied Biological Chemistry, The University of Tokyo, Bunkyo City, Japan
| | - Ikram Blilou
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- The Laboratory of Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tadao Asami
- Applied Biological Chemistry, The University of Tokyo, Bunkyo City, Japan
| | - Samir Jamil Al-Solimani
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdi Ali Ahmed Mousa
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Vegetables, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Salim Al-Babili
- The Bio Actives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
16
|
Jamil M, Wang JY, Yonli D, Ota T, Berqdar L, Traore H, Margueritte O, Zwanenburg B, Asami T, Al-Babili S. Striga hermonthica Suicidal Germination Activity of Potent Strigolactone Analogs: Evaluation from Laboratory Bioassays to Field Trials. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11081045. [PMID: 35448773 PMCID: PMC9025746 DOI: 10.3390/plants11081045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 05/04/2023]
Abstract
The obligate hemiparasite Striga hermonthica is one of the major global biotic threats to agriculture in sub-Saharan Africa, causing severe yield losses of cereals. The germination of Striga seeds relies on host-released signaling molecules, mainly strigolactones (SLs). This dependency opens up the possibility of deploying SL analogs as "suicidal germination agents" to reduce the accumulated seed bank of Striga in infested soils. Although several synthetic SL analogs have been developed for this purpose, the utility of these compounds in realizing the suicidal germination strategy for combating Striga is still largely unknown. Here, we evaluated the efficacy of three potent SL analogs (MP3, MP16, and Nijmegen-1) under laboratory, greenhouse, and farmer's field conditions. All investigated analogs showed around a 50% Striga germination rate, equivalent to a 50% reduction in infestation, which was comparable to the standard SL analog GR24. Importantly, MP16 had the maximum reduction of Striga emergence (97%) in the greenhouse experiment, while Nijmegen-1 appeared to be a promising candidate under field conditions, with a 43% and 60% reduction of Striga emergence in pearl millet and sorghum fields, respectively. These findings confirm that the selected SL analogs appear to make promising candidates as simple suicidal agents both under laboratory and real African field conditions, which may support us to improve suicidal germination technology to deplete the Striga seed bank in African agriculture.
Collapse
Affiliation(s)
- Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (J.Y.W.); (L.B.)
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (J.Y.W.); (L.B.)
| | - Djibril Yonli
- Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou 04 BP 8645, Burkina Faso; (D.Y.); (H.T.); (O.M.)
| | - Tsuyoshi Ota
- Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan; (T.O.); (T.A.)
| | - Lamis Berqdar
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (J.Y.W.); (L.B.)
| | - Hamidou Traore
- Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou 04 BP 8645, Burkina Faso; (D.Y.); (H.T.); (O.M.)
| | - Ouedraogo Margueritte
- Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou 04 BP 8645, Burkina Faso; (D.Y.); (H.T.); (O.M.)
| | - Binne Zwanenburg
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Tadao Asami
- Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan; (T.O.); (T.A.)
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (J.Y.W.); (L.B.)
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Correspondence:
| |
Collapse
|
17
|
Jamil M, Wang JY, Yonli D, Patil RH, Riyazaddin M, Gangashetty P, Berqdar L, Chen GTE, Traore H, Margueritte O, Zwanenburg B, Bhoge SE, Al-Babili S. A New Formulation for Strigolactone Suicidal Germination Agents, towards Successful Striga Management. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060808. [PMID: 35336692 PMCID: PMC8955415 DOI: 10.3390/plants11060808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 05/14/2023]
Abstract
Striga hermonthica, a member of the Orobanchaceae family, is an obligate root parasite of staple cereal crops, which poses a tremendous threat to food security, contributing to malnutrition and poverty in many African countries. Depleting Striga seed reservoirs from infested soils is one of the crucial approaches to minimize subterranean damage to crops. The dependency of Striga germination on the host-released strigolactones (SLs) has prompted the development of the "Suicidal Germination" strategy to reduce the accumulated seed bank of Striga. The success of aforementioned strategy depends not only on the activity of the applied SL analogs, but also requires suitable application protocol with simple, efficient, and handy formulation for rain-fed African agriculture. Here, we developed a new formulation "Emulsifiable Concentration (EC)" for the two previously field-assessed SL analogs Methyl phenlactonoate 3 (MP3) and Nijmegen-1. The new EC formulation was evaluated for biological activities under lab, greenhouse, mini-field, and field conditions in comparison to the previously used Atlas G-1086 formulation. The EC formulation of SL analogs showed better activities on Striga germination with lower EC50 and high stability under Lab conditions. Moreover, EC formulated SL analogs at 1.0 µM concentrations reduced 89-99% Striga emergence in greenhouse. The two EC formulated SL analogs showed also a considerable reduction in Striga emergence in mini-field and field experiments. In conclusion, we have successfully developed a desired formulation for applying SL analogs as suicidal agents for large-scale field application. The encouraging results presented in this study pave the way for integrating the suicidal germination approach in sustainable Striga management strategies for African agriculture.
Collapse
Affiliation(s)
- Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; (M.J.); (J.Y.W.); (L.B.); (G.-T.E.C.)
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; (M.J.); (J.Y.W.); (L.B.); (G.-T.E.C.)
| | - Djibril Yonli
- Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou 04 BP 8645, Burkina Faso; (D.Y.); (H.T.); (O.M.)
| | - Rohit H. Patil
- UPL House, Express Highway, Bandra-East, Mumbai 400 051, Maharashtra, India; (R.H.P.); (S.E.B.)
| | - Mohammed Riyazaddin
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey BP 12404, Niger; (M.R.); (P.G.)
| | - Prakash Gangashetty
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey BP 12404, Niger; (M.R.); (P.G.)
| | - Lamis Berqdar
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; (M.J.); (J.Y.W.); (L.B.); (G.-T.E.C.)
| | - Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; (M.J.); (J.Y.W.); (L.B.); (G.-T.E.C.)
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hamidou Traore
- Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou 04 BP 8645, Burkina Faso; (D.Y.); (H.T.); (O.M.)
| | - Ouedraogo Margueritte
- Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou 04 BP 8645, Burkina Faso; (D.Y.); (H.T.); (O.M.)
| | - Binne Zwanenburg
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Satish Ekanath Bhoge
- UPL House, Express Highway, Bandra-East, Mumbai 400 051, Maharashtra, India; (R.H.P.); (S.E.B.)
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; (M.J.); (J.Y.W.); (L.B.); (G.-T.E.C.)
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Correspondence:
| |
Collapse
|
18
|
Gupta P, Mann V, Hirschberg J. Two roads diverge in the yellow pigments metabolic pathway for ABA synthesis. MOLECULAR PLANT 2022; 15:3-5. [PMID: 34775106 DOI: 10.1016/j.molp.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Prateek Gupta
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Varda Mann
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
19
|
Jia KP, Mi J, Ali S, Ohyanagi H, Moreno JC, Ablazov A, Balakrishna A, Berqdar L, Fiore A, Diretto G, Martínez C, de Lera AR, Gojobori T, Al-Babili S. An alternative, zeaxanthin epoxidase-independent abscisic acid biosynthetic pathway in plants. MOLECULAR PLANT 2022; 15:151-166. [PMID: 34547513 DOI: 10.1016/j.molp.2021.09.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid (ABA) is an important carotenoid-derived phytohormone that plays essential roles in plant response to biotic and abiotic stresses as well as in various physiological and developmental processes. In Arabidopsis, ABA biosynthesis starts with the epoxidation of zeaxanthin by the ABA DEFICIENT 1 (ABA1) enzyme, leading to epoxycarotenoids; e.g., violaxanthin. The oxidative cleavage of 9-cis-epoxycarotenoids, a key regulatory step catalyzed by 9-CIS-EPOXYCAROTENOID DIOXYGENASE, forms xanthoxin, which is converted in further reactions mediated by ABA DEFICIENT 2 (ABA2), ABA DEFICIENT 3 (ABA3), and ABSCISIC ALDEHYDE OXIDASE 3 (AAO3) into ABA. By combining genetic and biochemical approaches, we unravel here an ABA1-independent ABA biosynthetic pathway starting upstream of zeaxanthin. We identified the carotenoid cleavage products (i.e., apocarotenoids, β-apo-11-carotenal, 9-cis-β-apo-11-carotenal, 3-OH-β-apo-11-carotenal, and 9-cis-3-OH-β-apo-11-carotenal) as intermediates of this ABA1-independent ABA biosynthetic pathway. Using labeled compounds, we showed that β-apo-11-carotenal, 9-cis-β-apo-11-carotenal, and 3-OH-β-apo-11-carotenal are successively converted into 9-cis-3-OH-β-apo-11-carotenal, xanthoxin, and finally into ABA in both Arabidopsis and rice. When applied to Arabidopsis, these β-apo-11-carotenoids exert ABA biological functions, such as maintaining seed dormancy and inducing the expression of ABA-responsive genes. Moreover, the transcriptomic analysis revealed a high overlap of differentially expressed genes regulated by β-apo-11-carotenoids and ABA, suggesting that β-apo-11-carotenoids exert ABA-independent regulatory activities. Taken together, our study identifies a biological function for the common plant metabolites, β-apo-11-carotenoids, extends our knowledge about ABA biosynthesis, and provides new insights into plant apocarotenoid metabolic networks.
Collapse
Affiliation(s)
- Kun-Peng Jia
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Jianing Mi
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Shawkat Ali
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Hajime Ohyanagi
- Biological and Environmental Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Juan C Moreno
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdugaffor Ablazov
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Aparna Balakrishna
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Lamis Berqdar
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Alessia Fiore
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy
| | - Claudio Martínez
- Universidade de Vigo, Facultade de Química and CINBIO, 36310 Vigo, Spain
| | - Angel R de Lera
- Universidade de Vigo, Facultade de Química and CINBIO, 36310 Vigo, Spain
| | - Takashi Gojobori
- Biological and Environmental Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Salim Al-Babili
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
20
|
Zheng X, Yang Y, Al-Babili S. Exploring the Diversity and Regulation of Apocarotenoid Metabolic Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:787049. [PMID: 34956282 PMCID: PMC8702529 DOI: 10.3389/fpls.2021.787049] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 05/31/2023]
Abstract
In plants, carotenoids are subjected to enzyme-catalyzed oxidative cleavage reactions as well as to non-enzymatic degradation processes, which produce various carbonyl products called apocarotenoids. These conversions control carotenoid content in different tissues and give rise to apocarotenoid hormones and signaling molecules, which play important roles in plant growth and development, response to environmental stimuli, and in interactions with surrounding organisms. In addition, carotenoid cleavage gives rise to apocarotenoid pigments and volatiles that contribute to the color and flavor of many flowers and several fruits. Some apocarotenoid pigments, such as crocins and bixin, are widely utilized as colorants and additives in food and cosmetic industry and also have health-promoting properties. Considering the importance of this class of metabolites, investigation of apocarotenoid diversity and regulation has increasingly attracted the attention of plant biologists. Here, we provide an update on the plant apocarotenoid biosynthetic pathway, especially highlighting the diversity of the enzyme carotenoid cleavage dioxygenase 4 (CCD4) from different plant species with respect to substrate specificity and regioselectivity, which contribute to the formation of diverse apocarotenoid volatiles and pigments. In addition, we summarize the regulation of apocarotenoid metabolic pathway at transcriptional, post-translational, and epigenetic levels. Finally, we describe inter- and intraspecies variation in apocarotenoid production observed in many important horticulture crops and depict recent progress in elucidating the genetic basis of the natural variation in the composition and amount of apocarotenoids. We propose that the illustration of biochemical, genetic, and evolutionary background of apocarotenoid diversity would not only accelerate the discovery of unknown biosynthetic and regulatory genes of bioactive apocarotenoids but also enable the identification of genetic variation of causal genes for marker-assisted improvement of aroma and color of fruits and vegetables and CRISPR-based next-generation metabolic engineering of high-value apocarotenoids.
Collapse
|
21
|
Wang JY, Alseekh S, Xiao T, Ablazov A, Perez de Souza L, Fiorilli V, Anggarani M, Lin PY, Votta C, Novero M, Jamil M, Lanfranco L, Hsing YIC, Blilou I, Fernie AR, Al-Babili S. Multi-omics approaches explain the growth-promoting effect of the apocarotenoid growth regulator zaxinone in rice. Commun Biol 2021; 4:1222. [PMID: 34697384 PMCID: PMC8545949 DOI: 10.1038/s42003-021-02740-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
The apocarotenoid zaxinone promotes growth and suppresses strigolactone biosynthesis in rice. To shed light on the mechanisms underlying its growth-promoting effect, we employed a combined omics approach integrating transcriptomics and metabolomics analysis of rice seedlings treated with zaxinone, and determined the resulting changes at the cellular and hormonal levels. Metabolites as well as transcripts analysis demonstrate that zaxinone application increased sugar content and triggered glycolysis, the tricarboxylic acid cycle and other sugar-related metabolic processes in rice roots. In addition, zaxinone treatment led to an increased root starch content and induced glycosylation of cytokinins. The transcriptomic, metabolic and hormonal changes were accompanied by striking alterations of roots at cellular level, which showed an increase in apex length, diameter, and the number of cells and cortex cell layers. Remarkably, zaxinone did not affect the metabolism of roots in a strigolactone deficient mutant, suggesting an essential role of strigolactone in the zaxinone growth-promoting activity. Taken together, our results unravel zaxinone as a global regulator of the transcriptome and metabolome, as well as of hormonal and cellular composition of rice roots. Moreover, they suggest that zaxinone promotes rice growth most likely by increasing sugar uptake and metabolism, and reinforce the potential of this compound in increasing rice performance. Wang et al. report zaxinone as a global regulator of the transcriptome and metabolome, as well as of hormonal and cellular composition of rice roots. This study shows that zaxinone promotes rice growth by enhancing root sugar uptake and metabolism and modulation of cytokinin content, indicating the potential application of this compound in increasing rice performance.
Collapse
Affiliation(s)
- Jian You Wang
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.,Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Tingting Xiao
- The Laboratory of Plant Cell and Developmental Biology (LPCDB), Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Abdugaffor Ablazov
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Marita Anggarani
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Pei-Yu Lin
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Yue-Ie C Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Ikram Blilou
- The Laboratory of Plant Cell and Developmental Biology (LPCDB), Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
22
|
Jamil M, Kountche BA, Al-Babili S. Current progress in Striga management. PLANT PHYSIOLOGY 2021; 185:1339-1352. [PMID: 33793943 PMCID: PMC8133620 DOI: 10.1093/plphys/kiab040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/18/2021] [Indexed: 05/20/2023]
Abstract
The Striga, particularly S. he rmonthica, problem has become a major threat to food security, exacerbating hunger and poverty in many African countries. A number of Striga control strategies have been proposed and tested during the past decade, however, further research efforts are still needed to provide sustainable and effective solutions to the Striga problem. In this paper, we provide an update on the recent progress and the approaches used in Striga management, and highlight emerging opportunities for developing new technologies to control this enigmatic parasite.
Collapse
Affiliation(s)
- Muhammad Jamil
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Boubacar A Kountche
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Author for communication:
| |
Collapse
|
23
|
Moreno JC, Mi J, Alagoz Y, Al‐Babili S. Plant apocarotenoids: from retrograde signaling to interspecific communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:351-375. [PMID: 33258195 PMCID: PMC7898548 DOI: 10.1111/tpj.15102] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 05/08/2023]
Abstract
Carotenoids are isoprenoid compounds synthesized by all photosynthetic and some non-photosynthetic organisms. They are essential for photosynthesis and contribute to many other aspects of a plant's life. The oxidative breakdown of carotenoids gives rise to the formation of a diverse family of essential metabolites called apocarotenoids. This metabolic process either takes place spontaneously through reactive oxygen species or is catalyzed by enzymes generally belonging to the CAROTENOID CLEAVAGE DIOXYGENASE family. Apocarotenoids include the phytohormones abscisic acid and strigolactones (SLs), signaling molecules and growth regulators. Abscisic acid and SLs are vital in regulating plant growth, development and stress response. SLs are also an essential component in plants' rhizospheric communication with symbionts and parasites. Other apocarotenoid small molecules, such as blumenols, mycorradicins, zaxinone, anchorene, β-cyclocitral, β-cyclogeranic acid, β-ionone and loliolide, are involved in plant growth and development, and/or contribute to different processes, including arbuscular mycorrhiza symbiosis, abiotic stress response, plant-plant and plant-herbivore interactions and plastid retrograde signaling. There are also indications for the presence of structurally unidentified linear cis-carotene-derived apocarotenoids, which are presumed to modulate plastid biogenesis and leaf morphology, among other developmental processes. Here, we provide an overview on the biology of old, recently discovered and supposed plant apocarotenoid signaling molecules, describing their biosynthesis, developmental and physiological functions, and role as a messenger in plant communication.
Collapse
Affiliation(s)
- Juan C. Moreno
- Max Planck Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1Potsdam14476Germany
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Jianing Mi
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Yagiz Alagoz
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Salim Al‐Babili
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|