1
|
Chen Y, Kong D, Wang Z, Liu J, Wang L, Dai K, Ji J, Chen W, Tang X, Wen M, Zhang X, Zhang H, Jiao C, Sun L, Wang H, Fei X, Guo H, Sun B, Tao X, Wang W, Yang J, Wang X, Xiao J. A wheat CC-NBS-LRR protein Ym1 confers WYMV resistance by recognizing viral coat protein. Nat Commun 2025; 16:3630. [PMID: 40240346 PMCID: PMC12003722 DOI: 10.1038/s41467-025-58816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Ym1 is the most widely utilized gene for wheat yellow mosaic virus (WYMV) disease control in worldwide wheat breeding. Here, we successfully isolated the responsible gene for Ym1. It encodes a typical CC-NBS-LRR type R protein, which is specifically expressed in root and induced upon WYMV infection. Ym1-mediated WYMV resistance is likely achieved by blocking viral transmission from the root cortex into steles, thereby preventing systemic movement to aerial tissues. Ym1 CC domain is essential for triggering cell death. Ym1 specifically interacts with WYMV coat protein, and this interaction leads to nucleocytoplasmic redistribution, a process for transitioning Ym1 from an auto-inhibited to an activated state. The activation subsequently elicits hypersensitive responses and establishes WYMV resistance. Ym1 is likely introgressed from the sub-genome Xn or Xc of polyploid Aegilops species. The findings highlight an exogenous-introgressed and root-specifically expressed R gene that confers WYMV resistance by recognizing the viral component.
Collapse
Affiliation(s)
- Yiming Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Dehui Kong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Zongkuan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jiaqian Liu
- Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Linghan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Keli Dai
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jialun Ji
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiong Tang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Mingxing Wen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Xu Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Huajian Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Chengzhi Jiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Li Sun
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Haiyan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Xingru Fei
- Yandu District Agricultural Science Research Institute, Yancheng, Jiangsu, China
| | - Hong Guo
- Yandu District Agricultural Science Research Institute, Yancheng, Jiangsu, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jian Yang
- Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Xiue Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China.
| | - Jin Xiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Mori A, Nakagawa S, Suzuki T, Suzuki T, Gaudin V, Matsuura T, Ikeda Y, Tamura K. The importin α proteins IMPA1, IMPA2, and IMPA4 play redundant roles in suppressing autoimmunity in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17203. [PMID: 39658755 DOI: 10.1111/tpj.17203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Proteins in the importin α (IMPA) family play pivotal roles in intracellular nucleocytoplasmic transport. Arabidopsis thaliana possesses nine IMPA members, with diverse tissue-specific expression patterns. Among these nine IMPAs, IMPA1, IMPA2, and IMPA4 cluster together phylogenetically, suggesting potential functional redundancy. To explore this redundancy, we analyzed single and multiple T-DNA mutants for these genes and discovered severe growth defects in the impa1 impa2 impa4 triple knockout mutant but not in the single or double mutants. Complementation with IMPA1, IMPA2, or IMPA4 fused to green fluorescent protein (GFP) rescued the growth defects observed in the impa1 impa2 impa4 mutant, indicating the functional redundancy of these three IMPAs. The IMPA-GFP fusion proteins were localized in the nucleus and nuclear envelope, suggesting their involvement in nucleocytoplasmic transport processes. Comparative transcriptomics revealed that salicylic acid (SA)-responsive genes were significantly upregulated in the impa1 impa2 impa4 triple mutant. Consistent with this observation, impa1 impa2 impa4 mutant plants accumulated SA and reactive oxygen species to high levels compared with wild-type plants. We also found enhanced resistance to the anthracnose pathogen Colletotrichum higginsianum in the impa1 impa2 impa4 mutants, suggesting that defense responses were constitutively activated in the impa1 impa2 impa4 mutant. Our findings shed light on the redundant roles of IMPA1, IMPA2, and IMPA4 in suppressing the autoimmune responses and suggest avenues of research to clarify their potentially unique roles.
Collapse
Affiliation(s)
- Airi Mori
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Shitomi Nakagawa
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Toshiyuki Suzuki
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Valérie Gaudin
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| |
Collapse
|
3
|
Xu S, Wei X, Yang Q, Hu D, Zhang Y, Yuan X, Kang F, Wu Z, Yan Z, Luo X, Sun Y, Wang S, Feng Y, Xu Q, Zhang M, Yang Y. A KNOX Ⅱ transcription factor suppresses the NLR immune receptor BRG8-mediated immunity in rice. PLANT COMMUNICATIONS 2024; 5:101001. [PMID: 38863209 PMCID: PMC11573908 DOI: 10.1016/j.xplc.2024.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/21/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Nucleotide-binding site and leucine-rich repeat (NLR) proteins are activated by detecting pathogen effectors, which in turn trigger host defenses and cell death. Although many NLRs have been identified, the mechanisms responsible for NLR-triggered defense responses are still poorly understood. In this study, through a genome-wide association study approach, we identified a novel NLR gene, Blast Resistance Gene 8 (BRG8), which confers resistance to rice blast and bacterial blight diseases. BRG8 overexpression and complementation lines exhibit enhanced resistance to both pathogens. Subcellular localization assays showed that BRG8 is localized in both the cytoplasm and the nucleus. Additional evidence revealed that nuclear-localized BRG8 can enhance rice immunity without a hypersensitive response (HR)-like phenotype. We also demonstrated that the coiled-coil domain of BRG8 not only physically interacts with itself but also interacts with the KNOX Ⅱ protein HOMEOBOX ORYZA SATIVA59 (HOS59). Knockout mutants of HOS59 in the BRG8 background show enhanced resistance to Magnaporthe oryzae strain CH171 and Xoo strain CR4, similar to that of the BRG8 background. By contrast, overexpression of HOS59 in the BRG8 background will compromise the HR-like phenotype and resistance response. Further analysis revealed that HOS59 promotes the degradation of BRG8 via the 26S proteasome pathway. Collectively, our study highlights HOS59 as an NLR immune regulator that fine-tunes BRG8-mediated immune responses against pathogens, providing new insights into NLR associations and functions in plant immunity.
Collapse
Affiliation(s)
- Siliang Xu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Xinghua Wei
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Qinqin Yang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Dongxiu Hu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuanyuan Zhang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaoping Yuan
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Fengyu Kang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhaozhong Wu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhiqin Yan
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xueqin Luo
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Yanfei Sun
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Shan Wang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yue Feng
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Qun Xu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Mengchen Zhang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| | - Yaolong Yang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
4
|
Liu L, Liu Y, Ji X, Zhao X, Liu J, Xu N. Coronatine orchestrates ABI1-mediated stomatal opening to facilitate bacterial pathogen infection through importin β protein SAD2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:676-688. [PMID: 38683723 DOI: 10.1111/tpj.16784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 05/02/2024]
Abstract
Stomatal immunity plays an important role during bacterial pathogen invasion. Abscisic acid (ABA) induces plants to close their stomata and halt pathogen invasion, but many bacterial pathogens secrete phytotoxin coronatine (COR) to antagonize ABA signaling and reopen the stomata to promote infection at early stage of invasion. However, the underlining mechanism is not clear. SAD2 is an importin β family protein, and the sad2 mutant shows hypersensitivity to ABA. We discovered ABI1, which negatively regulated ABA signaling and reduced plant sensitivity to ABA, was accumulated in the plant nucleus after COR treatment. This event required SAD2 to import ABI1 to the plant nucleus. Abolition of SAD2 undermined ABI1 accumulation. Our study answers the long-standing question of how bacterial COR antagonizes ABA signaling and reopens plant stomata during pathogen invasion.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, China
| | - Yanzhi Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Xuehan Ji
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, China
| | - Xia Zhao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, China
| | - Jun Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, China
| | - Ning Xu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Xie B, Luo M, Li Q, Shao J, Chen D, Somers DE, Tang D, Shi H. NUA positively regulates plant immunity by coordination with ESD4 to deSUMOylate TPR1 in Arabidopsis. THE NEW PHYTOLOGIST 2024; 241:363-377. [PMID: 37786257 PMCID: PMC10843230 DOI: 10.1111/nph.19287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Nuclear pore complex (NPC) is composed of multiple nucleoporins (Nups). A plethora of studies have highlighted the significance of NPC in plant immunity. However, the specific roles of individual Nups are poorly understood. NUCLEAR PORE ANCHOR (NUA) is a component of NPC. Loss of NUA leads to an increase in SUMO conjugates and pleiotropic developmental defects in Arabidopsis thaliana. Herein, we revealed that NUA is required for plant defense against multiple pathogens. NUCLEAR PORE ANCHOR associates with the transcriptional corepressor TOPLESS-RELATED1 (TPR1) and contributes to TPR1 deSUMOylation. Significantly, NUA-interacting protein EARLY IN SHORT DAYS 4 (ESD4), a SUMO protease, specifically deSUMOylates TPR1. It has been previously established that the SUMO E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE 1 (SIZ1)-mediated SUMOylation of TPR1 represses the immune-related function of TPR1. Consistent with this notion, the hyper-SUMOylated TPR1 in nua-3 leads to upregulated expression of TPR1 target genes and compromised TPR1-mediated disease resistance. Taken together, our work uncovers a mechanism by which NUA positively regulates plant defense responses by coordination with ESD4 to deSUMOylate TPR1. Our findings, together with previous studies, reveal a regulatory module in which SIZ1 and NUA/ESD4 control the homeostasis of TPR1 SUMOylation to maintain proper immune output.
Collapse
Affiliation(s)
- Bao Xie
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyu Luo
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiuyi Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Shao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Desheng Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - David E Somers
- Department of Molecular Genetics, The Ohio State University, Columbus 43210, USA
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua Shi
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
6
|
Jia M, Chen X, Shi X, Fang Y, Gu Y. Nuclear transport receptor KA120 regulates molecular condensation of MAC3 to coordinate plant immune activation. Cell Host Microbe 2023; 31:1685-1699.e7. [PMID: 37714161 DOI: 10.1016/j.chom.2023.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
The nucleocytoplasmic exchange is of fundamental importance to eukaryotic life and is mediated by karyopherins, a superfamily of nuclear transport receptors. However, the function and cargo spectrum of plant karyopherins are largely obscure. Here, we report proximity-labeling-based proteomic profiling of in vivo substrates of KA120, a karyopherin-β required for suppressing autoimmune induction in Arabidopsis. We identify multiple components of the MOS4-associated complex (MAC), a conserved splicing regulatory protein complex. Surprisingly, we find that KA120 does not affect the nucleocytoplasmic distribution of MAC proteins but rather prevents their protein condensation in the nucleus. Furthermore, we demonstrate that MAC condensation is robustly induced by pathogen infection, which is sufficient to activate defense gene expression, possibly by sequestrating negative immune regulators via phase transition. Our study reveals a noncanonical chaperoning activity of a plant karyopherin, which modulates the nuclear condensation of an evolutionarily conserved splicing regulatory complex to coordinate plant immune activation.
Collapse
Affiliation(s)
- Min Jia
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xuanyi Chen
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Shi
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiling Fang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Xiong X, Li J, Su P, Duan H, Sun L, Xu S, Sun Y, Zhao H, Chen X, Ding D, Zhang X, Tang J. Genetic dissection of maize (Zea mays L.) chlorophyll content using multi-locus genome-wide association studies. BMC Genomics 2023; 24:384. [PMID: 37430212 DOI: 10.1186/s12864-023-09504-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The chlorophyll content (CC) is a key factor affecting maize photosynthetic efficiency and the final yield. However, its genetic basis remains unclear. The development of statistical methods has enabled researchers to design and apply various GWAS models, including MLM, MLMM, SUPER, FarmCPU, BLINK and 3VmrMLM. Comparative analysis of their results can lead to more effective mining of key genes. RESULTS The heritability of CC was 0.86. Six statistical models (MLM, BLINK, MLMM, FarmCPU, SUPER, and 3VmrMLM) and 1.25 million SNPs were used for the GWAS. A total of 140 quantitative trait nucleotides (QTNs) were detected, with 3VmrMLM and MLM detecting the most (118) and fewest (3) QTNs, respectively. The QTNs were associated with 481 genes and explained 0.29-10.28% of the phenotypic variation. Additionally, 10 co-located QTNs were detected by at least two different models or methods, three co-located QTNs were identified in at least two different environments, and six co-located QTNs were detected by different models or methods in different environments. Moreover, 69 candidate genes within or near these stable QTNs were screened based on the B73 (RefGen_v2) genome. GRMZM2G110408 (ZmCCS3) was identified by multiple models and in multiple environments. The functional characterization of this gene indicated the encoded protein likely contributes to chlorophyll biosynthesis. In addition, the CC differed significantly between the haplotypes of the significant QTN in this gene, and CC was higher for haplotype 1. CONCLUSION This study's results broaden our understanding of the genetic basis of CC, mining key genes related to CC and may be relevant for the ideotype-based breeding of new maize varieties with high photosynthetic efficiency.
Collapse
Affiliation(s)
- Xuehang Xiong
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jianxin Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Pingping Su
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haiyang Duan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuhao Xu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yan Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haidong Zhao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaoyang Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China.
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
8
|
Sun Y, Ma S, Liu X, Wang GF. The maize ZmVPS23-like protein relocates the nucleotide-binding leucine-rich repeat protein Rp1-D21 to endosomes and suppresses the defense response. THE PLANT CELL 2023; 35:2369-2390. [PMID: 36869653 PMCID: PMC10226561 DOI: 10.1093/plcell/koad061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 05/30/2023]
Abstract
Plants often utilize nucleotide-binding leucine-rich repeat (NLR) proteins to perceive pathogen infections and trigger a hypersensitive response (HR). The endosomal sorting complex required for transport (ESCRT) machinery is a conserved multisubunit complex that is essential for the biogenesis of multivesicular bodies and cargo protein sorting. VPS23 is a key component of ESCRT-I and plays important roles in plant development and abiotic stresses. ZmVPS23L, a homolog of VPS23-like in maize (Zea mays), was previously identified as a candidate gene in modulating HR mediated by the autoactive NLR protein Rp1-D21 in different maize populations. Here, we demonstrate that ZmVPS23L suppresses Rp1-D21-mediated HR in maize and Nicotiana benthamiana. Variation in the suppressive effect of HR by different ZmVPS23L alleles was correlated with variation in their expression levels. ZmVPS23 also suppressed Rp1-D21-mediated HR. ZmVPS23L and ZmVPS23 predominantly localized to endosomes, and they physically interacted with the coiled-coil domain of Rp1-D21 and mediated the relocation of Rp1-D21 from the nucleo-cytoplasm to endosomes. In summary, we demonstrate that ZmVPS23L and ZmVPS23 are negative regulators of Rp1-D21-mediated HR, likely by sequestrating Rp1-D21 in endosomes via physical interaction. Our findings reveal the role of ESCRT components in controlling plant NLR-mediated defense responses.
Collapse
Affiliation(s)
- Yang Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Shijun Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Guan-Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
9
|
Tehrani N, Mitra RM. Plant pathogens and symbionts target the plant nucleus. Curr Opin Microbiol 2023; 72:102284. [PMID: 36868049 DOI: 10.1016/j.mib.2023.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 03/05/2023]
Abstract
In plant-microbe interactions, symbionts and pathogens live within plants and attempt to avoid triggering plant defense responses. In order to do so, these microbes have evolved multiple mechanisms that target components of the plant cell nucleus. Rhizobia-induced symbiotic signaling requires the function of specific legume nucleoporins within the nuclear pore complex. Symbiont and pathogen effectors harbor nuclear localization sequences that facilitate movement across nuclear pores, allowing these proteins to target transcription factors that function in defense. Oomycete pathogens introduce proteins that interact with plant pre-mRNA splicing components in order to alter host splicing of defense-related transcripts. Together, these functions indicate that the nucleus is an active site of symbiotic and pathogenic functioning in plant-microbe interactions.
Collapse
|
10
|
Wang Z, Yang L, Hua J. The intracellular immune receptor like gene SNC1 is an enhancer of effector-triggered immunity in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:874-884. [PMID: 36449532 PMCID: PMC9922396 DOI: 10.1093/plphys/kiac543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Plants contain many nucleotide-binding leucine-rich repeat (NLR) proteins that are postulated to function as intracellular immune receptors but do not yet have an identified function during plant-pathogen interactions. SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1) is one such NLR protein of the Toll-interleukin 1 receptor (TIR) type, despite its well-characterized gain-of-function activity and its involvement in autoimmunity in Arabidopsis (Arabidopsis thaliana). Here, we investigated the role of SNC1 in natural plant-pathogen interactions and genetically tested the importance of the enzymatic activities of its TIR domain for its function. The SNC1 loss-of-function mutants were more susceptible to avirulent bacterial pathogen strains of Pseudomonas syringae containing specific effectors, especially under constant light growth condition. The mutants also had reduced defense gene expression induction and hypersensitive responses upon infection by avirulent pathogens under constant light growth condition. In addition, genetic and biochemical studies supported that the TIR enzymatic activity of SNC1 is required for its gain-of-function activity. In sum, our study uncovers the role of SNC1 as an amplifier of plant defense responses during natural plant-pathogen interactions and indicates its use of enzymatic activity and intermolecular interactions for triggering autoimmune responses.
Collapse
Affiliation(s)
- Zhixue Wang
- Plant Biology section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Leiyun Yang
- Plant Biology section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jian Hua
- Plant Biology section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Jin L, Zhang G, Yang G, Dong J. Identification of the Karyopherin Superfamily in Maize and Its Functional Cues in Plant Development. Int J Mol Sci 2022; 23:ijms232214103. [PMID: 36430578 PMCID: PMC9699179 DOI: 10.3390/ijms232214103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Appropriate nucleo-cytoplasmic partitioning of proteins is a vital regulatory mechanism in phytohormone signaling and plant development. However, how this is achieved remains incompletely understood. The Karyopherin (KAP) superfamily is critical for separating the biological processes in the nucleus from those in the cytoplasm. The KAP superfamily is divided into Importin α (IMPα) and Importin β (IMPβ) families and includes the core components in mediating nucleocytoplasmic transport. Recent reports suggest the KAPs play crucial regulatory roles in Arabidopsis development and stress response by regulating the nucleo-cytoplasmic transport of members in hormone signaling. However, the KAP members and their associated molecular mechanisms are still poorly understood in maize. Therefore, we first identified seven IMPα and twenty-seven IMPβ genes in the maize genome and described their evolution traits and the recognition rules for substrates with nuclear localization signals (NLSs) or nuclear export signals (NESs) in plants. Next, we searched for the protein interaction partners of the ZmKAPs and selected the ones with Arabidopsis orthologs functioning in auxin biosynthesis, transport, and signaling to predict their potential function. Finally, we found that several ZmKAPs share similar expression patterns with their interacting proteins, implying their function in root development. Overall, this article focuses on the Karyopherin superfamily in maize and starts with this entry point by systematically comprehending the KAP-mediated nucleo-cytoplasmic transport process in plants, and then predicts the function of the ZmKAPs during maize development, with a perspective on a closely associated regulatory mechanism between the nucleo-cytoplasmic transport and the phytohormone network.
Collapse
Affiliation(s)
- Lu Jin
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Guobin Zhang
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Guixiao Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiaqiang Dong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
12
|
Lüdke D, Yan Q, Rohmann PFW, Wiermer M. NLR we there yet? Nucleocytoplasmic coordination of NLR-mediated immunity. THE NEW PHYTOLOGIST 2022; 236:24-42. [PMID: 35794845 DOI: 10.1111/nph.18359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat immune receptors (NLRs) perceive the activity of pathogen-secreted effector molecules that, when undetected, promote colonisation of hosts. Signalling from activated NLRs converges with and potentiates downstream responses from activated pattern recognition receptors (PRRs) that sense microbial signatures at the cell surface. Efficient signalling of both receptor branches relies on the host cell nucleus as an integration point for transcriptional reprogramming, and on the macromolecular transport processes that mediate the communication between cytoplasm and nucleoplasm. Studies on nuclear pore complexes (NPCs), the nucleoporin proteins (NUPs) that compose NPCs, and nuclear transport machinery constituents that control nucleocytoplasmic transport, have revealed that they play important roles in regulating plant immune responses. Here, we discuss the contributions of nucleoporins and nuclear transport receptor (NTR)-mediated signal transduction in plant immunity with an emphasis on NLR immune signalling across the nuclear compartment boundary and within the nucleus. We also highlight and discuss cytoplasmic and nuclear functions of NLRs and their signalling partners and further consider the potential implications of NLR activation and resistosome formation in both cellular compartments for mediating plant pathogen resistance and programmed host cell death.
Collapse
Affiliation(s)
- Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Qiqi Yan
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Philipp F W Rohmann
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
- Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| |
Collapse
|
13
|
Wang W, Gu Y. The emerging role of biomolecular condensates in plant immunity. THE PLANT CELL 2022; 34:1568-1572. [PMID: 34599333 PMCID: PMC9048959 DOI: 10.1093/plcell/koab240] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/22/2021] [Indexed: 05/29/2023]
Abstract
Biomolecular condensates are dynamic nonmembranous structures that seclude and concentrate molecules involved in related biochemical and molecular processes. Recent studies have revealed that a surprisingly large number of fundamentally important cellular processes are driven and regulated by this potentially ancient biophysical principle. Here, we summarize critical findings and new insights from condensate studies that are related to plant immunity. We discuss the role of stress granules and newly identified biomolecular condensates in coordinating plant immune responses and plant-microbe interactions.
Collapse
Affiliation(s)
- Wei Wang
- Author for correspondence: (W.W.), (Y.G.)
| | - Yangnan Gu
- Author for correspondence: (W.W.), (Y.G.)
| |
Collapse
|
14
|
Zhang X, Dong X. Life-or-death decisions in plant immunity. Curr Opin Immunol 2022; 75:102169. [PMID: 35168119 PMCID: PMC9081146 DOI: 10.1016/j.coi.2022.102169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/19/2022]
Abstract
Upon pathogen challenge, plant cells can mount defense not only by triggering programmed cell death (PCD) to limit pathogen growth, but also by secreting immune signals to activate subsequent organism-scale defense responses. Recent advances in the study of plant immune mechanisms have found that pathogen-induced oligomerization of immune receptors is a common 'on' switch for the normally self-inhibitory proteins. The resulting 'resistosome' triggers PCD through the formation of a calcium channel or a NADase. Synergy between different receptor-mediated signaling pathways appears to be required for sustained immune induction to trigger PCD of infected cells. In the neighboring cells, PCD is inhibited through the production of immune signal salicylic acid (SA) which mediates degradation of PCD-inducing immune components in biomolecular condensates. Future work is required to connect the resistosome-mediated channel formation and the NADase activity to the downstream regulation of immune execution.
Collapse
Affiliation(s)
- Xing Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
15
|
Wu X, Han J, Guo C. Function of Nuclear Pore Complexes in Regulation of Plant Defense Signaling. Int J Mol Sci 2022; 23:3031. [PMID: 35328452 PMCID: PMC8953349 DOI: 10.3390/ijms23063031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
In eukaryotes, the nucleus is the regulatory center of cytogenetics and metabolism, and it is critical for fundamental biological processes, including DNA replication and transcription, protein synthesis, and biological macromolecule transportation. The eukaryotic nucleus is surrounded by a lipid bilayer called the nuclear envelope (NE), which creates a microenvironment for sophisticated cellular processes. The NE is perforated by the nuclear pore complex (NPC), which is the channel for biological macromolecule bi-directional transport between the nucleus and cytoplasm. It is well known that NPC is the spatial designer of the genome and the manager of genomic function. Moreover, the NPC is considered to be a platform for the continual adaptation and evolution of eukaryotes. So far, a number of nucleoporins required for plant-defense processes have been identified. Here, we first provide an overview of NPC organization in plants, and then discuss recent findings in the plant NPC to elaborate on and dissect the distinct defensive functions of different NPC subcomponents in plant immune defense, growth and development, hormone signaling, and temperature response. Nucleoporins located in different components of NPC have their unique functions, and the link between the NPC and nucleocytoplasmic trafficking promotes crosstalk of different defense signals in plants. It is necessary to explore appropriate components of the NPC as potential targets for the breeding of high-quality and broad spectrum resistance crop varieties.
Collapse
Affiliation(s)
- Xi Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Changkui Guo
- Laboratory of Plant Molecular and Developmental Biology, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
16
|
Freh M, Gao J, Petersen M, Panstruga R. Plant autoimmunity-fresh insights into an old phenomenon. PLANT PHYSIOLOGY 2022; 188:1419-1434. [PMID: 34958371 PMCID: PMC8896616 DOI: 10.1093/plphys/kiab590] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
The plant immune system is well equipped to ward off the attacks of different types of phytopathogens. It primarily relies on two types of immune sensors-plasma membrane-resident receptor-like kinases and intracellular nucleotide-binding domain leucine-rich repeat (NLRs) receptors that engage preferentially in pattern- and effector-triggered immunity, respectively. Delicate fine-tuning, in particular of the NLR-governed branch of immunity, is key to prevent inappropriate and deleterious activation of plant immune responses. Inadequate NLR allele constellations, such as in the case of hybrid incompatibility, and the mis-activation of NLRs or the absence or modification of proteins guarded by these NLRs can result in the spontaneous initiation of plant defense responses and cell death-a phenomenon referred to as plant autoimmunity. Here, we review recent insights augmenting our mechanistic comprehension of plant autoimmunity. The recent findings broaden our understanding regarding hybrid incompatibility, unravel candidates for proteins likely guarded by NLRs and underline the necessity for the fine-tuning of NLR expression at various levels to avoid autoimmunity. We further present recently emerged tools to study plant autoimmunity and draw a cross-kingdom comparison to the role of NLRs in animal autoimmune conditions.
Collapse
Affiliation(s)
- Matthias Freh
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Jinlan Gao
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Morten Petersen
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| |
Collapse
|
17
|
Fang Y, Gu Y. Regulation of Plant Immunity by Nuclear Membrane-Associated Mechanisms. Front Immunol 2021; 12:771065. [PMID: 34938291 PMCID: PMC8685260 DOI: 10.3389/fimmu.2021.771065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022] Open
Abstract
Unlike animals, plants do not have specialized immune cells and lack an adaptive immune system. Instead, plant cells rely on their unique innate immune system to defend against pathogens and coordinate beneficial interactions with commensal and symbiotic microbes. One of the major convergent points for plant immune signaling is the nucleus, where transcriptome reprogramming is initiated to orchestrate defense responses. Mechanisms that regulate selective transport of nuclear signaling cargo and chromatin activity at the nuclear boundary play a pivotal role in immune activation. This review summarizes the current knowledge of how nuclear membrane-associated core protein and protein complexes, including the nuclear pore complex, nuclear transport receptors, and the nucleoskeleton participate in plant innate immune activation and pathogen resistance. We also discuss the role of their functional counterparts in regulating innate immunity in animals and highlight potential common mechanisms that contribute to nuclear membrane-centered immune regulation in higher eukaryotes.
Collapse
Affiliation(s)
- Yiling Fang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States.,Innovative Genomics Institute, University of California, Berkeley, CA, United States
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States.,Innovative Genomics Institute, University of California, Berkeley, CA, United States
| |
Collapse
|
18
|
Tang Y, Dong Q, Wang T, Gong L, Gu Y. PNET2 is a component of the plant nuclear lamina and is required for proper genome organization and activity. Dev Cell 2021; 57:19-31.e6. [PMID: 34822788 DOI: 10.1016/j.devcel.2021.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023]
Abstract
The interaction between chromatin and the nuclear lamina (NL) is intrinsically important to the establishment of three-dimensional chromatin architecture and spatiotemporal regulation of gene expression. However, critical regulators involved in this process are poorly understood in plants. Here, we report that Arabidopsis PNET2 and its two homologs are bona fide inner nuclear membrane proteins and integral components of the NL. PNET2s physically interact with the plant nucleoskeleton and engage nucleosome-enriched chromatin at the nuclear periphery. Loss of all three PNET2s leads to severely disrupted growth and development, concomitant activation of abiotic and biotic stress responses, and ultimate lethality in Arabidopsis. The pent2 triple mutant also displays drastic transcriptome changes accompanied by a globally altered chromatin architecture revealed by HiC analysis. Our study identified PNET2 as an inner nuclear membrane (INM) component of the NL, which associates with chromatin and play a critical role in orchestrating gene expression and chromatin organization in plants.
Collapse
Affiliation(s)
- Yu Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Castel B, Chae E. Nucleocytoplasmic trafficking during immunity. MOLECULAR PLANT 2021; 14:1612-1614. [PMID: 34400336 DOI: 10.1016/j.molp.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Baptiste Castel
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|