1
|
Wang C, Kuang L, Tian Z, Wang X, Tu J, Wang H, Dun X. Effect of Photoperiod on Ascorbic Acid Metabolism Regulation and Accumulation in Rapeseed ( Brassica napus L.) Seedlings. Antioxidants (Basel) 2025; 14:160. [PMID: 40002347 PMCID: PMC11851679 DOI: 10.3390/antiox14020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Ascorbic acid (AsA) is an important antioxidant for human health. The concept of "oil-vegetable-duel-purpose" can significantly enhance the economic benefits of the rapeseed industry. Rapeseed, when utilized as a vegetable, serves as a valuable food source of AsA. In this study, we integrated transcriptome and metabolome analyses, along with substrate feeding, to identify the L-galactose pathway as the primary source for AsA production, which is primarily regulated by light. Through seven different photoperiod treatments from 12 h/12 h (light/dark) to 24 h/0 h, we found that AsA content increased with longer photoperiods, as well as chlorophyll, carotenoids, and soluble sugars. However, an excessively long photoperiod led to photooxidative stress, which negatively affected biomass accumulation in rapeseed seedlings and subsequently impacted the total accumulation of AsA. Furthermore, different enzymes respond differently to different photoperiods. Analysis of the correlation between the expression levels of AsA biosynthesis-related genes and AsA content highlighted a dynamic balancing mechanism of AsA metabolism in response to different photoperiods. The study revealed that the 16 h/8 h photoperiod is optimal for long-term AsA accumulation in rapeseed seedlings. However, extending the photoperiod before harvest can enhance AsA content without compromising yield. These findings offer novel insights into an effective strategy for the biofortification of AsA in rapeseed.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (C.W.); (L.K.); (Z.T.); (X.W.)
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (C.W.); (L.K.); (Z.T.); (X.W.)
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (C.W.); (L.K.); (Z.T.); (X.W.)
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (C.W.); (L.K.); (Z.T.); (X.W.)
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (C.W.); (L.K.); (Z.T.); (X.W.)
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (C.W.); (L.K.); (Z.T.); (X.W.)
| |
Collapse
|
2
|
Zhang Y, Yang Z, He Y, Liu D, Liu Y, Liang C, Xie M, Jia Y, Ke Q, Zhou Y, Cheng X, Huang J, Liu L, Xiang Y, Raman H, Kliebenstein DJ, Liu S, Yang QY. Structural variation reshapes population gene expression and trait variation in 2,105 Brassica napus accessions. Nat Genet 2024; 56:2538-2550. [PMID: 39501128 PMCID: PMC11549052 DOI: 10.1038/s41588-024-01957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/23/2024] [Indexed: 11/10/2024]
Abstract
Although individual genomic structural variants (SVs) are known to influence gene expression and trait variation, the extent and scale of SV impact across a species remain unknown. In the present study, we constructed a reference library of 334,461 SVs from genome assemblies of 16 representative morphotypes of neopolyploid Brassica napus accessions and detected 258,865 SVs in 2,105 resequenced genomes. Coupling with 5 tissue population transcriptomes, we uncovered 285,976 SV-expression quantitative trait loci (eQTLs) that associate with altered expression of 73,580 genes. We developed a pipeline for the high-throughput joint analyses of SV-genome-wide association studies (SV-GWASs) and transcriptome-wide association studies of phenomic data, eQTLs and eQTL-GWAS colocalization, and identified 726 SV-gene expression-trait variation associations, some of which were verified by transgenics. The pervasive SV impact on how SV reshapes trait variation was demonstrated with the glucosinolate biosynthesis and transport pathway. The study highlighting the impact of genome-wide and species-scale SVs provides a powerful methodological strategy and valuable resources for studying evolution, gene discovery and breeding.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhiquan Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yizhou He
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yueying Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Congyuan Liang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yupeng Jia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qinglin Ke
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Junyan Huang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lijiang Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yang Xiang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Harsh Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, New South Wales, Australia
| | | | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
3
|
Atem JEC, Gan L, Yu W, Huang F, Wang Y, Baloch A, Nwafor CC, Barrie AU, Chen P, Zhang C. Bioinformatics and functional analysis of EDS1 genes in Brassica napus in response to Plasmodiophora brassicae infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112175. [PMID: 38986913 DOI: 10.1016/j.plantsci.2024.112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Enhanced Disease Susceptibility 1 (EDS1) is a key regulator of plant-pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) responses. In the Brassica napus genome, we identified six novel EDS1 genes, among which four were responsive to clubroot infection, a major rapeseed disease resistant to chemical control. Developing resistant cultivars is a potent and economically viable strategy to control clubroot infection. Bioinformatics analysis revealed conserved domains and structural uniformity in Bna-EDS1 homologs. Bna-EDS1 promoters harbored elements associated with diverse phytohormones and stress responses, highlighting their crucial roles in plant defense. A functional analysis was performed with Bna-EDS1 overexpression and RNAi transgenic lines. Bna-EDS1 overexpression boosted resistance to clubroot and upregulated defense-associated genes (PR1, PR2, ICS1, and CBP60), while Bna-EDS1 RNAi increased plant susceptibility, indicating suppression of the defense signaling pathway downstream of NBS-LRRs. RNA-Seq analysis identified key transcripts associated with clubroot resistance, including phenylpropanoid biosynthesis. Activation of SA regulator NPR1, defense signaling markers PR1 and PR2, and upregulation of MYC-TFs suggested that EDS1-mediated clubroot resistance potentially involves the SA pathway. Our findings underscore the pivotal role of Bna-EDS1-dependent mechanisms in resistance of B. napus to clubroot disease, and provide valuable insights for fortifying resistance against Plasmodiophora brassicae infection in rapeseed.
Collapse
Affiliation(s)
- Jalal Eldeen Chol Atem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Longcai Gan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Wenlin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Fan Huang
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE68588, USA; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Yanyan Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Amanullah Baloch
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chinedu Charles Nwafor
- Guangdong Ocean University, Zhanjiang 524088, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Alpha Umaru Barrie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria.
| |
Collapse
|
4
|
Xu S, Chen S, Cai J, Yan T, Tu M, Wang R, Hua S, Jiang L. Genomic and transcriptome analyses reveal potential contributors to erucic acid biosynthesis in seeds of rapeseed (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:129. [PMID: 38740615 DOI: 10.1007/s00122-024-04642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
KEY MESSAGE Through comprehensive genomic and transcriptomic analyses, we identified a set of 23 genes that act up- or downstream of erucic acid content (EAC) production in rapeseed seeds. We selected example genes to showcase the distribution of single nucleotide polymorphisms, haplotypes associated with EAC phenotypes, and the creation of molecular markers differentiating low EAC and high EAC genotypes. Erucic acid content (EAC) is a crucial trait in rapeseed, with low LEAC oil recognized for its health benefits and high EA oil holding industrial value. Despite its significance, the genomic consequences of intensive LEAC-cultivar selection and the genetic basis underlying EA regulation remain largely unexplored. To address this knowledge gap, we conducted selective signal analyses, genome-wide association studies (GWAS), and transcriptome analyses. Our investigation unveiled the genetic footprints resulting from LEAC selection in germplasm populations, drawing attention to specific loci that contribute to enriching diversity. By integrating GWAS and transcriptome analyses, we identified a set of 23 genes that play a significant role in determining EAC in seeds or are downstream consequences of EA-level alterations. These genes have emerged as promising candidates for elucidating the potential mechanisms governing EAC in rapeseed. To exemplify the findings, we selected specific genes to demonstrate the distribution of single nucleotide polymorphisms and haplotypes associated with different EAC phenotypes. Additionally, we showcased to develop molecular markers distinguishing between LEAC and high EAC genotypes.
Collapse
Affiliation(s)
- Shiqi Xu
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Shan Chen
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Jialing Cai
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Tao Yan
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Mengxin Tu
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Ruisen Wang
- Jaixing Academy of Agricultural Sciences, Jiaxing, 314000, China
| | - Shuijin Hua
- Zhejiang Academy of Agricultural Sciences, Desheng Zhong Road 298, Hangzhou, 310022, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Gu J, Guan Z, Jiao Y, Liu K, Hong D. The story of a decade: Genomics, functional genomics, and molecular breeding in Brassica napus. PLANT COMMUNICATIONS 2024; 5:100884. [PMID: 38494786 PMCID: PMC11009362 DOI: 10.1016/j.xplc.2024.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Rapeseed (Brassica napus L.) is one of the major global sources of edible vegetable oil and is also used as a feed and pioneer crop and for sightseeing and industrial purposes. Improvements in genome sequencing and molecular marker technology have fueled a boom in functional genomic studies of major agronomic characters such as yield, quality, flowering time, and stress resistance. Moreover, introgression and pyramiding of key functional genes have greatly accelerated the genetic improvement of important traits. Here we summarize recent progress in rapeseed genomics and genetics, and we discuss effective molecular breeding strategies by exploring these findings in rapeseed. These insights will extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture throughout the world.
Collapse
Affiliation(s)
- Jianwei Gu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Life Science and Technology, Hubei Engineering University, Xiaogan 432100 Hubei, China
| | - Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 Hubei, China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Yazhouwan National Laboratory, Sanya 572024 Hainan, China.
| |
Collapse
|
6
|
Wang R, Li Y, Xu S, Huang Q, Tu M, Zhu Y, Cen H, Dong J, Jiang L, Yao X. Genome-wide association study reveals the genetic basis for petal-size formation in rapeseed (Brassica napus) and CRISPR-Cas9-mediated mutagenesis of BnFHY3 for petal-size reduction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:373-387. [PMID: 38159103 DOI: 10.1111/tpj.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Petals in rapeseed (Brassica napus) serve multiple functions, including protection of reproductive organs, nutrient acquisition, and attraction of pollinators. However, they also cluster densely at the top, forming a thick layer that absorbs and reflects a considerable amount of photosynthetically active radiation. Breeding genotypes with large, small, or even petal-less varieties, requires knowledge of primary genes for allelic selection and manipulation. However, our current understanding of petal-size regulation is limited, and the lack of markers and pre-breeding materials hinders targeted petal-size breeding. Here, we conducted a genome-wide association study on petal size using 295 diverse accessions. We identified 20 significant single nucleotide polymorphisms and 236 genes associated with petal-size variation. Through a cross-analysis of genomic and transcriptomic data, we focused on 14 specific genes, from which molecular markers for diverging petal-size features can be developed. Leveraging CRISPR-Cas9 technology, we successfully generated a quadruple mutant of Far-Red Elongated Hypocotyl 3 (q-bnfhy3), which exhibited smaller petals compared to the wild type. Our study provides insights into the genetic basis of petal-size regulation in rapeseed and offers abundant potential molecular markers for breeding. The q-bnfhy3 mutant unveiled a novel role of FHY3 orthologues in regulating petal size in addition to previously reported functions.
Collapse
Affiliation(s)
- Ruisen Wang
- Jaixing Academy of Agricultural Sciences, Jiaxing, 314000, China
| | - Yafei Li
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Shiqi Xu
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Qi Huang
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Mengxin Tu
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Yang Zhu
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Haiyan Cen
- College of Food Science and Bioengineering, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Jie Dong
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Xiangtan Yao
- Jaixing Academy of Agricultural Sciences, Jiaxing, 314000, China
| |
Collapse
|
7
|
Chen L, He W, Yu Y, Wang Y, Zhai X, Ling X, Lu P, Cheng X, Lei W, Fan Z. Molecular mapping and candidate gene identification of two major quantitative trait loci associated with silique length in oilseed rape ( Brassica napus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:26. [PMID: 38516204 PMCID: PMC10951173 DOI: 10.1007/s11032-024-01464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Rapeseed is a significant global source of plant oil. Silique size, particularly silique length (SL), impacts rapeseed yield. SL is a typical quantitative trait controlled by multiple genes. In our previous study, we constructed a DH population of 178 families known as the 158A-SGDH population. In this study, through SL QTL mapping, we identified twenty-six QTL for SL across five replicates in two environments. A QTL meta-analysis revealed eight consensus QTL, including two major QTL: cqSL.A02-1 (11.32-16.44% of PVE for SL), and cqSL.C06-1 (10.90-11.95% of PVE for SL). Based on biparental resequencing data and microcollinearity analysis of target regions in Brassica napus and Arabidopsis, we identified 11 candidate genes at cqSL.A02-1 and 6 candidate genes at cqSL.C06-1, which are potentially associated with silique development. Furthermore, transcriptome analysis of silique valves from both parents on the 14th, 21st, and 28th days after pollination (DAP) combined with gene function annotation revealed three significantly differentially expressed genes at cqSL.A02-1, BnaA02G0058500ZS, BnaA02G0060100ZS, and BnaA02G0060900ZS. Only the gene BnaC06G0283800ZS showed significant differences in parental transcription at cqSL.C06-1. Two tightly linked insertion-deletion markers for the cqSL.A02-1 and cqSL.C06-1 loci were developed. Using these two QTL, we generated four combinations: A02SGDH284C06158A, A02SGDH284C06SGDH284, A02158AC06158A, and A02158AC06SGDH284. Subsequent analysis identified an ideal QTL combination, A02158AC06SGDH284, which exhibited the longest SL of this type, reaching 6.06 ± 0.10 cm, significantly surpassing the other three combinations. The results will provide the basis for the cloning of SL-related genes of rapeseed, along with the development of functional markers of target genes and the breeding of rapeseed varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01464-x.
Collapse
Affiliation(s)
- Lei Chen
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100 China
| | - Wangfei He
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100 China
| | - Yulin Yu
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100 China
| | - Yifan Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100 China
| | - Xueyang Zhai
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100 China
| | - Xinxiang Ling
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100 China
| | - Pan Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100 China
| | - Xinxin Cheng
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100 China
| | - Weixia Lei
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Zhixiong Fan
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| |
Collapse
|
8
|
Tan Z, Han X, Dai C, Lu S, He H, Yao X, Chen P, Yang C, Zhao L, Yang QY, Zou J, Wen J, Hong D, Liu C, Ge X, Fan C, Yi B, Zhang C, Ma C, Liu K, Shen J, Tu J, Yang G, Fu T, Guo L, Zhao H. Functional genomics of Brassica napus: Progresses, challenges, and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:484-509. [PMID: 38456625 DOI: 10.1111/jipb.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.
Collapse
Affiliation(s)
- Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanzi He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Ding T, Cai L, He Y, Li Y, Tian E, Zhou Q, Zhou X, Wang X, Yu K, Shen X. BnPLP1 Positively Regulates Flowering Time, Plant Height, and Main Inflorescence Length in Brassica napus. Genes (Basel) 2023; 14:2206. [PMID: 38137028 PMCID: PMC10743044 DOI: 10.3390/genes14122206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protein prenylation mediated by the Arabidopsis thaliana PLURIPETALA (AtPLP) gene plays a crucial role in plant growth, development, and environmental response by adding a 15-carbon farnesyl group or one to two 20-carbon geranylgeranyl groups onto one to two cysteine residues at the C-terminus of the target protein. However, the homologous genes and their functions of AtPLP in rapeseed are unclear. In this study, bioinformatics analysis and gene cloning demonstrated the existence of two homologous genes of AtPLP in the Brassica napus L. genome, namely, BnPLP1 and BnPLP2. Evolutionary analysis revealed that BnPLP1 originated from the B. rapa L. genome, while BnPLP2 originated from the B. oleracea L. genome. Genetic transformation analysis revealed that the overexpression of BnPLP1 in Arabidopsis plants exhibited earlier flowering initiation, a prolonged flowering period, increased plant height, and longer main inflorescence length compared to the wild type. Contrarily, the downregulation of BnPLP1 expression in B. napus plants led to delayed flowering initiation, shortened flowering period, decreased plant height, and reduced main inflorescence length compared to the wild type. These findings indicate that the BnPLP1 gene positively regulates flowering time, plant height, and main inflorescence length. This provides a new gene for the genetic improvement of flowering time and plant architecture in rapeseed.
Collapse
Affiliation(s)
- Ting Ding
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
| | - Lei Cai
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
- Center for Research and Development of Fine Chemical of Guizhou University, Guiyang 550025, China
| | - Yuqi He
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
| | - Yuanhong Li
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
| | - Entang Tian
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
| | - Qianhui Zhou
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
| | - Xufan Zhou
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
| | - Xiaodong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China;
| | - Kunjiang Yu
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
- Center for Research and Development of Fine Chemical of Guizhou University, Guiyang 550025, China
| | - Xinjie Shen
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
| |
Collapse
|
10
|
Cui X, Hu M, Yao S, Zhang Y, Tang M, Liu L, Cheng X, Tong C, Liu S. BnaOmics: A comprehensive platform combining pan-genome and multi-omics data from Brassica napus. PLANT COMMUNICATIONS 2023; 4:100609. [PMID: 37098652 PMCID: PMC10504585 DOI: 10.1016/j.xplc.2023.100609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 06/01/2023]
Affiliation(s)
- Xiaobo Cui
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ming Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shengli Yao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuanyuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), College of Forestry, Hainan University, Haikou 570228, China
| | - Lijiang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chaobo Tong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
11
|
Liu D, Yan G, Wang S, Yu L, Lin W, Lu S, Guo L, Yang QY, Dai C. Comparative transcriptome profiling reveals the multiple levels of crosstalk in phytohormone networks in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37154465 PMCID: PMC10363766 DOI: 10.1111/pbi.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/13/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Plant hormones are the intrinsic factors that control plant development. The integration of different phytohormone pathways in a complex network of synergistic, antagonistic and additive interactions has been elucidated in model plants. However, the systemic level of transcriptional responses to hormone crosstalk in Brassica napus is largely unknown. Here, we present an in-depth temporal-resolution study of the transcriptomes of the seven hormones in B. napus seedlings. Differentially expressed gene analysis revealed few common target genes that co-regulated (up- and down-regulated) by seven hormones; instead, different hormones appear to regulate distinct members of protein families. We then constructed the regulatory networks between the seven hormones side by side, which allowed us to identify key genes and transcription factors that regulate the hormone crosstalk in B. napus. Using this dataset, we uncovered a novel crosstalk between gibberellin and cytokinin in which cytokinin homeostasis was mediated by RGA-related CKXs expression. Moreover, the modulation of gibberellin metabolism by the identified key transcription factors was confirmed in B. napus. Furthermore, all data were available online from http://yanglab.hzau.edu.cn/BnTIR/hormone. Our study reveals an integrated hormone crosstalk network in Brassica napus, which also provides a versatile resource for future hormone studies in plant species.
Collapse
Affiliation(s)
- Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Guanbo Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shengbo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wei Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
He J, Zhang K, Yan S, Tang M, Zhou W, Yin Y, Chen K, Zhang C, Li M. Genome-scale targeted mutagenesis in Brassica napus using a pooled CRISPR library. Genome Res 2023; 33:798-809. [PMID: 37290935 PMCID: PMC10317123 DOI: 10.1101/gr.277650.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/19/2023] [Indexed: 06/10/2023]
Abstract
The recently constructed mutant libraries of diploid crops by the CRISPR-Cas9 system have provided abundant resources for functional genomics and crop breeding. However, because of the genome complexity, it is a big challenge to accomplish large-scale targeted mutagenesis in polyploid plants. Here, we demonstrate the feasibility of using a pooled CRISPR library to achieve genome-scale targeted editing in an allotetraploid crop of Brassica napus A total of 18,414 sgRNAs were designed to target 10,480 genes of interest, and afterward, 1104 regenerated transgenic plants harboring 1088 sgRNAs were obtained. Editing interrogation results revealed that 93 of the 178 genes were identified as mutated, thus representing an editing efficiency of 52.2%. Furthermore, we have discovered that Cas9-mediated DNA cleavages tend to occur at all the target sites guided by the same individual sgRNA, a novel finding in polyploid plants. Finally, we show the strong capability of reverse genetic screening for various traits with the postgenotyped plants. Several genes, which might dominate the fatty acid profile and seed oil content and have yet to be reported, were unveiled from the forward genetic studies. Our research provides valuable resources for functional genomics, elite crop breeding, and a good reference for high-throughput targeted mutagenesis in other polyploid plants.
Collapse
Affiliation(s)
- Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Shuxiang Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Mi Tang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Weixian Zhou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| |
Collapse
|
13
|
Long Z, Tu M, Xu Y, Pak H, Zhu Y, Dong J, Lu Y, Jiang L. Genome-wide-association study and transcriptome analysis reveal the genetic basis controlling the formation of leaf wax in Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2726-2739. [PMID: 36724105 DOI: 10.1093/jxb/erad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/01/2023] [Indexed: 06/06/2023]
Abstract
Cuticular wax protects plants from various biotic and abiotic stresses. However, the genetic network of wax biosynthesis and the environmental factors influencing leaf wax production in rapeseed (Brassica napus) remains unclear. Here, we demonstrated the role of leaf wax in the resistance to Sclerotinia infection in rapeseed. We found that leaves grown under high light intensity had higher expression of genes involved in wax biosynthesis, and produced more wax on the leaf surface, compared with those grown under low light conditions. Genome-wide association study (GWAS) identified 89 single nucleotide polymorphisms significantly associated with leaf wax coverage. A cross-analysis between GWAS and differentially expressed genes (DEGs) in the leaf epidermis of the accessions with contrasting differences in wax content revealed 17 candidate genes that control this variation in rapeseed. Selective sweep analysis combined with DEG analysis unveiled 510 candidate genes with significant selective signatures. From the candidate genes, we selected BnaA02.LOX4, a putative lipoxygenase, and BnaCnn.CER1, BnaA02.CER3, BnaC02.CER3, and BnaA01.CER4 (ECERIFERUM1-4) that were putatively responsible for wax biosynthesis, to analyse the allelic forms and haplotypes corresponding to high or low leaf wax coverage. These data enrich our knowledge about wax formation, and provide a gene pool for breeding an ideal leaf wax content in rapeseed.
Collapse
Affiliation(s)
- Zhengbiao Long
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| | - Mengxin Tu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| | - Ying Xu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| | - Haksong Pak
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| | - Yang Zhu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| | - Jie Dong
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| | - Yunhai Lu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| |
Collapse
|
14
|
Yang Z, Wang S, Wei L, Huang Y, Liu D, Jia Y, Luo C, Lin Y, Liang C, Hu Y, Dai C, Guo L, Zhou Y, Yang QY. BnIR: A multi-omics database with various tools for Brassica napus research and breeding. MOLECULAR PLANT 2023; 16:775-789. [PMID: 36919242 DOI: 10.1016/j.molp.2023.03.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
In the post-genome-wide association study era, multi-omics techniques have shown great power and potential for candidate gene mining and functional genomics research. However, due to the lack of effective data integration and multi-omics analysis platforms, such techniques have not still been applied widely in rapeseed, an important oil crop worldwide. Here, we report a rapeseed multi-omics database (BnIR; http://yanglab.hzau.edu.cn/BnIR), which provides datasets of six omics including genomics, transcriptomics, variomics, epigenetics, phenomics, and metabolomics, as well as numerous "variation-gene expression-phenotype" associations by using multiple statistical methods. In addition, a series of multi-omics search and analysis tools are integrated to facilitate the browsing and application of these datasets. BnIR is the most comprehensive multi-omics database for rapeseed so far, and two case studies demonstrated its power to mine candidate genes associated with specific traits and analyze their potential regulatory mechanisms.
Collapse
Affiliation(s)
- Zhiquan Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Shengbo Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lulu Wei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiming Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yupeng Jia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengfang Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuchen Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Congyuan Liang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Chen L, Lei W, He W, Wang Y, Tian J, Gong J, Hao B, Cheng X, Shu Y, Fan Z. Mapping of Two Major QTLs Controlling Flowering Time in Brassica napus Using a High-Density Genetic Map. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192635. [PMID: 36235500 PMCID: PMC9571212 DOI: 10.3390/plants11192635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 05/31/2023]
Abstract
Research on the flowering habit of rapeseed is important for the selection of varieties adapted to specific ecological environments. Here, quantitative trait loci (QTL) for the days-to-flowering trait were identified using a doubled haploid population of 178 lines derived from a cross between the winter type SGDH284 and the semi-winter type 158A. A linkage map encompassing 3268.01 cM was constructed using 2777 bin markers obtained from next-generation sequencing. The preliminary mapping results revealed 56 QTLs for the days to flowering in the six replicates in the three environments. Twelve consensus QTLs were identified by a QTL meta-analysis, two of which (cqDTF-C02 and cqDTF-C06) were designated as major QTLs. Based on the micro-collinearity of the target regions between B. napus and Arabidopsis, four genes possibly related to flowering time were identified in the cqDTF-C02 interval, and only one gene possibly related to flowering time was identified in the cqDTF-C06 interval. A tightly linked insertion-deletion marker for the cqFT-C02 locus was developed. These findings will aid the breeding of early maturing B. napus varieties.
Collapse
Affiliation(s)
- Lei Chen
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Weixia Lei
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wangfei He
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Yifan Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Jie Tian
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Jihui Gong
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Bing Hao
- Bengbu Ludu Crop Residue Biotechnology Co., Ltd., Bengbu 233000, China
| | - Xinxin Cheng
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Yingjie Shu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Zhixiong Fan
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|