1
|
Fornasiero A, Feng T, Al-Bader N, Alsantely A, Mussurova S, Hoang NV, Misra G, Zhou Y, Fabbian L, Mohammed N, Rivera Serna L, Thimma M, Llaca V, Parakkal P, Kudrna D, Copetti D, Rajasekar S, Lee S, Talag J, Sobel-Sorenson C, Carpentier MC, Panaud O, McNally KL, Zhang J, Zuccolo A, Schranz ME, Wing RA. Oryza genome evolution through a tetraploid lens. Nat Genet 2025:10.1038/s41588-025-02183-5. [PMID: 40295881 DOI: 10.1038/s41588-025-02183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
Oryza is a remarkable genus comprising 27 species and 11 genome types, with ~3.4-fold genome size variation, that possesses a virtually untapped reservoir of genes that can be used for crop improvement and neodomestication. Here we present 11 chromosome-level assemblies (nine tetraploid, two diploid) in the context of ~15 million years of evolution and show that the core Oryza (sub)genome is only ~200 Mb and largely syntenic, whereas the remaining nuclear fractions (~80-600 Mb) are intermingled, plastic and rapidly evolving. For the halophyte Oryza coarctata, we found that despite detection of gene fractionation in the subgenomes, homoeologous genes were expressed at higher levels in one subgenome over the other in a mosaic form, demonstrating subgenome equivalence. The integration of these 11 new reference genomes with previously published genome datasets provides a nearly complete view of the consequences of evolution for genome diversification across the genus.
Collapse
Affiliation(s)
- Alice Fornasiero
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Tao Feng
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Noor Al-Bader
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Aseel Alsantely
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- National Center for Vegetation Development and Combating Desertification (NCVC), Riyadh, Saudi Arabia
| | - Saule Mussurova
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nam V Hoang
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Gopal Misra
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yong Zhou
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Leonardo Fabbian
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nahed Mohammed
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luis Rivera Serna
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manjula Thimma
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Victor Llaca
- Research and Development, Corteva Agriscience, Johnston, IA, USA
| | | | - David Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Dario Copetti
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Seunghee Lee
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Jayson Talag
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Chandler Sobel-Sorenson
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS/IRD 52, Université de Perpignan, Perpignan, France
- EMR MANGO Université de Perpignan/CNRS/IRD, Perpignan, France
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS/IRD 52, Université de Perpignan, Perpignan, France
- EMR MANGO Université de Perpignan/CNRS/IRD, Perpignan, France
| | - Kenneth L McNally
- Rice Breeding Innovations Department, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Andrea Zuccolo
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Institute of Crop Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands.
| | - Rod A Wing
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Liu S, Cao Z, Lun J, Zhang C, Pan L. Rapid detection of ACCase W2027C mutation in Leptochloa chinensis (L.) Nees using RAA-CRISPR/Cas12a: a sensitive and visual tool for herbicide resistance diagnosis. PEST MANAGEMENT SCIENCE 2025. [PMID: 40265707 DOI: 10.1002/ps.8840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Prolonged application of ACCase-inhibiting herbicides, such as cyhalofop-butyl, has resulted in the widespread emergence of herbicide-resistant Leptochloa chinensis populations in paddy fields. Among the numerous target-site resistance (TSR) mutations in ACCase, the Trp-2027-Cys (W2027C) mutation is one of the most prevalent in L. chinensis. The increasing prevalence of herbicide-resistant L. chinensis highlights the critical need for rapid and precise diagnostic tools to detect resistance mutations. RESULTS In this study, we present a novel detection system that integrates Recombinase-Aided Amplification (RAA) with CRISPR/Cas12a technology to specifically target the W2027C mutation in the ACCase gene of L. chinensis. The system exhibits high sensitivity, capable of detecting DNA concentrations as low as 2-200 fg/μL, and high specificity, facilitating accurate and visual differentiation of resistant from susceptible plants, thereby offering significant potential for rapid field applications. CONCLUSION This report has described the application of the RAA-CRISPR system for mutation detection in herbicide resistant weeds, presenting a promising tool for integrated weed management and enabling more timely decision-making regarding herbicide application and resistance management. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shu Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Ziheng Cao
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jiahao Lun
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Chao Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| |
Collapse
|
3
|
Jiang M, Chen X, He T, Hu W, Zhao N, Liao M, Cao H. A novel ACCase Trp-1999-Gly mutation confers resistance to ACCase-inhibiting herbicides in Chinese sprangletop (Leptochloa chinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109596. [PMID: 39923419 DOI: 10.1016/j.plaphy.2025.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Chinese sprangletop (Leptochloa chinensis (L.) Nees) is among the most economically damaging and disruptive weeds found in rice fields across China, and it exhibits a high degree of cyhalofop-butyl resistance for the past few years. Here, a suspected cyhalofop-butyl-resistant population HFCH5 (R) was collected from a rice field and analyzed to explore the mechanistic basis for its resistance activity. Compared with the susceptible HFLY1 (S) population, this R population exhibited differing levels of resistance to four ACCase-inhibiting herbicides (cyhalofop-butyl (RI = 11.52), fenoxaprop-P-ethyl (RI = 11.05), metamifop (RI = 6.61), and clethodim (RI = 4.06)), although it did exhibit susceptibility to florpyrauxifen-benzyl, tripyrasulfone, pyraclonil, and anilofos. This cyhalofop-butyl resistance in R plants was not effectively mitigated by pre-treatment with the cytochrome P450 inhibitor piperonyl butoxide or the glutathione S-transferase inhibitor 4-chloro-7-nitrobenzoxadiazole. Further analyses of these R plants revealed the substitution of Trp-1999 (TGG) for a Gly residue (GGG) within the ACCase carboxyltransferase domain. When the wild-type and mutated forms of this ACCase protein were subjected to structural modeling while complexed with a range of herbicides with ACCase-inhibiting activity, this Trp-1999-Gly substitution was found to be associated with a slight decrease in the affinity of this protein for a series of ACCase-inhibiting herbicides. A dCAPS marker was developed to aid in the rapid detection of this Trp (TGG)-1999-Gly (GGG) mutation within L. chinensis. Notably, before or after four ACCase-inhibiting herbicides (cyhalofop-butyl, fenoxaprop-P-ethyl, metamifop and clethodim) treatment, ACCase gene expression level of the R plants was not significantly higher (fold change <2, P > 0.05) than that of the S plants. This study is the first report that in grass species, the newly identified ACCase Trp-1999-Gly mutation is associated with ACCase-inhibiting herbicide resistance.
Collapse
Affiliation(s)
- Minghao Jiang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xin Chen
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Tianqiao He
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Hu
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Ning Zhao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Min Liao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Haiqun Cao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
4
|
Serim AT, Asav Ü, Kaya Y, Başaran B, Patterson EL. Evaluating the role of post-harvest glyphosate application in enhancing weed control in winter wheat. PeerJ 2025; 13:e19177. [PMID: 40183056 PMCID: PMC11967411 DOI: 10.7717/peerj.19177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Changes in the timing and intensity of spring rainfall have led to a significant increase in late-season weed emergence in Türkiye. These newly emerged weeds tend to grow more vigorously due to the absence of competition with crops and other weeds during their development. Two field experiments were conducted in continuous monoculture winter wheat over three growing seasons (2020-2023) in Türkiye. The first goal was to determine the impact of post-harvest herbicide (PHH) on the critical time for weed removal (CTWR) in winter wheat, and the second goal was to evaluate the effects of PHH combined with various weed control treatments on weed populations, the soil seed bank, and crop yield. The experiment followed a split-plot design, with the PHH regimes and weed removal timing or weed control treatments serving as the main and sub-plots, respectively. The herbicide regime included post-harvest glyphosate potassium salt (PHG) applied at 2.646 kg ai ha-1 and No PHG. Weed removal timings were set at 10-day intervals, from 0 to 110 days after wheat emergence (DAE). Weedy and weed-free controls were included for comparison. The weed control treatments involved post-emergence tribenuron-methyl at 7.5 g ai ha-1 and hand weeding. The application of the PHG delayed the CTWR from 416 growing degree days (GDD) to 516.5 GDD in 2022 and from 465.6 GDD to 661.2 GDD in 2023, effectively preventing yield loss. The combined use of PHG with post-emergence tribenuron-methyl or hand weeding maximized wheat yield while minimizing the weed flora and the size of the soil seed bank.
Collapse
Affiliation(s)
- Ahmet Tansel Serim
- Department of Plant Protection, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Ünal Asav
- Department of Plant Protection, Gaziosmanpasa University, Tokat, Turkey
| | - Yalçın Kaya
- Middle Black Sea Transitional Zone Agricultural Research Institute, Tokat, Turkey
| | - Bülent Başaran
- Middle Black Sea Transitional Zone Agricultural Research Institute, Tokat, Turkey
| | - Eric L. Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
5
|
Yang S, Cao Q, Wen Z, Wang A, Shi S, Liang Z, Li S, Gui W, Zhu J. Chromosome-level genome assembly of Cyperus iria, an aggressive weed of rice. Sci Data 2025; 12:120. [PMID: 39837845 PMCID: PMC11751304 DOI: 10.1038/s41597-025-04470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
Cyperus iria is an aggressive weed of rice throughout the world. Until now, the reference genome of C. iria has not been published. Here, we completed the chromosome-level genome assembly of C. iria based on Illumina, PacBio and Hi-C reads. The assembled genome size of C. iria was 479.08 Mb with a contig N50 of 7.02 Mb. 68 pseudochromosomes were produced using Hi-C scaffolding, accounting for 99.65% of the assembled genome. The number of predicted protein-coding genes is 47,395, of which 93.26% were annotated, and 37.69% repetitive sequences were identified. Our study provided a valuable genomic resource for the molecular biology research and the management of C. iria.
Collapse
Affiliation(s)
- Siyu Yang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qingyi Cao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zexin Wen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Aoxue Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shiyao Shi
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhuoying Liang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, P. R. China.
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, P. R. China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| | - Jinwen Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, P. R. China.
| |
Collapse
|
6
|
Han Y, Wu J, Zhu Q, Ye C, Li X. Assembly of a reference-quality genome and resequencing diverse accessions of Beckmannia syzigachne provide insights into population structure and gene family evolution. PLANT COMMUNICATIONS 2025; 6:101174. [PMID: 39415450 PMCID: PMC11783888 DOI: 10.1016/j.xplc.2024.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Affiliation(s)
- Yang Han
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianxiang Wu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qianhao Zhu
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Chuyu Ye
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xinxin Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Le VV, Nguyen AV, Luu DT, Fritschi FB, Nguyen CT, Ho TL. Inhibitory effects of N-trans-cinnamoyltyramine on growth of invasive weeds and weedy rice. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e70017. [PMID: 39493659 PMCID: PMC11531779 DOI: 10.1002/pei3.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
N-trans-cinnamoyltyramine (NTCT) has been identified from an allelopathic Vietnamese rice accession OM 5930. This study employed bioassays to analyze NTCT's effects on shoot and root growth of multiple test and weed species. NTCT demonstrated potent inhibitory effects on cress, lettuce, canola, palmer amaranth, timothy, barnyardgrass, red sprangletop, and weedy rice, with increasing concentrations leading to substantial reductions in growth in all species. Linear regression analysis of dose response curves revealed ED50 values for NTCT, providing critical insights into the concentration required for 50% growth inhibition in each species. They revealed high sensitivity of the test species cress and lettuce, intermediate sensitivities of barnyardgrass, red sprangletop, timothy, and amaranth, and comparatively lower sensitivity of two weedy rice accessions. The findings underscore NTCT's efficacy in suppressing the growth of a wide range of weeds, including both grasses and broadleaf species. As such, NTCT may hold promise as a tool for sustainable weed management, particularly in addressing herbicide-resistant weeds in diverse ecological settings.
Collapse
Affiliation(s)
- Vang V. Le
- College of AgricultureCan Tho UniversityCan ThoVietnam
| | - Ay V. Nguyen
- College of AgricultureCan Tho UniversityCan ThoVietnam
| | - Danh T. Luu
- College of AgricultureCan Tho UniversityCan ThoVietnam
| | - Felix B. Fritschi
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | | | - Thi L. Ho
- College of AgricultureCan Tho UniversityCan ThoVietnam
| |
Collapse
|
8
|
Jiang M, Wang X, Hu W, Wang Z, Guan H, Zhao N, Liao M, Cao H. A novel mutation Trp-2027-Gly in acetyl-CoA carboxylase confers resistance to cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis). PEST MANAGEMENT SCIENCE 2024; 80:6243-6250. [PMID: 39105535 DOI: 10.1002/ps.8353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Chinese sprangletop [Leptochloa chinensis (L.) Nees] control is threatened by resistance to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. In this study, a L. chinensis population, HFLJ18, that survived cyhalofop-butyl [aryloxyphenoxypropionate (APP) herbicide, CyB] treatment was collected from a rice field in Lujiang County, Anhui Province, China. This study aimed to evaluate the susceptibility of HFLJ18 to herbicides with different modes-of-action and investigate the potential mechanisms of resistance to CyB. RESULTS The HFLJ18 population exhibited high levels of resistance to CyB (10.92-fold) and showed resistance to the ACCase inhibitors metamifop (4.63-fold) and fenoxaprop-P-ethyl (8.39-fold), but was susceptible to clethodim, pinoxaden, florpyrauxifen-benzyl, oxadiazon and pretilachlor. Target gene sequencing revealed a novel Trp-to-Gly substitution at codon position 2027 of ACCase in the resistant plants. Molecular docking revealed that the spatial structure of ACCase changed significantly following the substitution, as indicated by reduced H-bonds. A newly derived cleaved amplified polymorphic sequence (dCAPS) marker was subsequently developed to detect the Trp-2027-Gly mutation in the ACCase of L. chinensis. Additionally, pretreatment with the cytochrome P450 (P450) inhibitor piperonyl butoxide (PBO) and the glutathione S-transferase (GST) inhibitor 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) did not reverse resistance to CyB, suggesting that nontarget-site resistance mechanisms were not involved in CyB resistance in the HFLJ18 population. CONCLUSION Overall, the resistance to CyB in the HFLJ18 population derived from the mutation of ACCase gene, and to the best of our knowledge, this is the first report of the ACCase Trp-2027-Gly mutation conferring resistance to ACCase-inhibiting herbicides in grass species. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Minghao Jiang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xumiao Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Wei Hu
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zezhou Wang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Huaiji Guan
- Anhui Shanghe Voda Biotechnology Co., Ltd, Huainan, China
| | - Ning Zhao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Min Liao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
9
|
Lin H, Chen L, Cai C, Ma J, Li J, Ashman TL, Liston A, Dong M. Genomic data provides insights into the evolutionary history and adaptive differentiation of two tetraploid strawberries. HORTICULTURE RESEARCH 2024; 11:uhae194. [PMID: 39257537 PMCID: PMC11384118 DOI: 10.1093/hr/uhae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024]
Abstract
Over the decades, evolutionists and ecologists have shown intense interest in the role of polyploidization in plant evolution. Without clear knowledge of the diploid ancestor(s) of polyploids, we would not be able to answer fundamental ecological questions such as the evolution of niche differences between them or its underlying genetic basis. Here, we explored the evolutionary history of two Fragaria tetraploids, Fragaria corymbosa and Fragaria moupinensis. We de novo assembled five genomes including these two tetraploids and three diploid relatives. Based on multiple lines of evidence, we found no evidence of subgenomes in either of the two tetraploids, suggesting autopolyploid origins. We determined that Fragaria chinensis was the diploid ancestor of F. corymbosa while either an extinct species affinitive to F. chinensis or an unsampled population of F. chinensis could be the progenitor of F. moupinensis. Meanwhile, we found introgression signals between F. chinensis and Fragaria pentaphylla, leading to the genomic similarity between these two diploids. Compared to F. chinensis, gene families related to high ultraviolet (UV)-B and DNA repair were expanded, while those that responded towards abiotic and biotic stresses (such as salt stress, wounding, and various pathogens) were contracted in both tetraploids. Furthermore, the two tetraploids tended to down-regulate defense response genes but up-regulate UV-B response, DNA repairing, and cell division gene expression compared to F. chinensis. These findings may reflect adaptions toward high-altitude habitats. In summary, our work provides insights into the genome evolution of wild Fragaria tetraploids and opens up an avenue for future works to answer deeper evolutionary and ecological questions regarding the strawberry genus.
Collapse
Affiliation(s)
- Hanyang Lin
- School of Advanced Study, Taizhou University, Taizhou 318000, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Luxi Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Chaonan Cai
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Junxia Ma
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Junmin Li
- School of Advanced Study, Taizhou University, Taizhou 318000, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Chen BZ, Li DW, Luo KY, Jiu ST, Dong X, Wang WB, Li XZ, Hao TT, Lei YH, Guo DZ, Liu XT, Duan SC, Zhu YF, Chen W, Dong Y, Yu WB. Chromosome-level assembly of Lindenbergia philippensis and comparative genomic analyses shed light on genome evolution in Lamiales. FRONTIERS IN PLANT SCIENCE 2024; 15:1444234. [PMID: 39157518 PMCID: PMC11327160 DOI: 10.3389/fpls.2024.1444234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Lamiales, comprising over 23,755 species across 24 families, stands as a highly diverse and prolific plant group, playing a significant role in the cultivation of horticultural, ornamental, and medicinal plant varieties. Whole-genome duplication (WGD) and its subsequent post-polyploid diploidization (PPD) process represent the most drastic type of karyotype evolution, injecting significant potential for promoting the diversity of this lineage. However, polyploidization histories, as well as genome and subgenome fractionation following WGD events in Lamiales species, are still not well investigated. In this study, we constructed a chromosome-level genome assembly of Lindenbergia philippensis (Orobanchaceae) and conducted comparative genomic analyses with 14 other Lamiales species. L. philippensis is positioned closest to the parasitic lineage within Orobanchaceae and has a conserved karyotype. Through a combination of Ks analysis and syntenic depth analysis, we reconstructed and validated polyploidization histories of Lamiales species. Our results indicated that Primulina huaijiensis underwent three rounds of diploidization events following the γ-WGT event, rather than two rounds as reported. Besides, we reconfirmed that most Lamiales species shared a common diploidization event (L-WGD). Subsequently, we constructed the Lamiales Ancestral Karyotype (LAK), comprising 11 proto-chromosomes, and elucidated its evolutionary trajectory, highlighting the highly flexible reshuffling of the Lamiales paleogenome. We identified biased fractionation of subgenomes following the L-WGD event across eight species, and highlighted the positive impacts of non-WGD genes on gene family expansion. This study provides novel genomic resources and insights into polyploidy and karyotype remodeling of Lamiales species, essential for advancing our understanding of species diversification and genome evolution.
Collapse
Affiliation(s)
- Bao-Zheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Da-Wei Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Kai-Yong Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Song-Tao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Dong
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wei-Bin Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xu-Zhen Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ting-Ting Hao
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ya-Hui Lei
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Da-Zhong Guo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xu-Tao Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sheng-Chang Duan
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yi-Fan Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wei Chen
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yang Dong
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wen-Bin Yu
- Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Mengla, Yunnan, China
| |
Collapse
|
11
|
Chen Y, Yan Y, Chen J, Zheng B, Jiang Y, Kang Z, Wu J. A Novel AHAS-Inhibiting Herbicide Candidate for Controlling Leptochloa chinensis: A Devastating Weedy Grass in Rice Fields. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16140-16151. [PMID: 39007211 DOI: 10.1021/acs.jafc.4c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Given the prevalence of the malignant weed Chinese Sprangletop (Leptochloa chinensis (L.) Nees) in rice fields, the development of novel herbicides against this weed has aroused wide interest. Here, we report a novel diphenyl ether-pyrimidine hybrid, DEP-5, serving as a systematic pre/postemergence herbicide candidate for broad-spectrum weed control in rice fields, specifically for L. chinensis. Notably, DEP-5 exhibits over 80% herbicidal activity against the resistant biotypes even at 37.5 g a.i./ha under greenhouse conditions and has complete control of L. chinensis at 150 g a.i./ha in the rice fields. We uncover that DEP-5 acts as a noncompetitive inhibitor of acetohydroxyacid synthase (AHAS) with an inhibition constant (Ki) of 39.4 μM. We propose that DEP-5 binds to AHAS in two hydrophobic-driven binding modes that differ from commercial AHAS inhibitors. Overall, these findings demonstrate that DEP-5 has great potential to be developed into a herbicide for L. chinensis control and inspire fresh concepts for novel AHAS-inhibiting herbicide design.
Collapse
Affiliation(s)
- Yinglu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yitao Yan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jie Chen
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Ben Zheng
- Hangzhou Jingyinkang Biological Technology Co., Ltd., Hangzhou 311110, China
| | - Youwei Jiang
- Hangzhou Jingyinkang Biological Technology Co., Ltd., Hangzhou 311110, China
| | | | - Jun Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Montgomery J, Morran S, MacGregor DR, McElroy JS, Neve P, Neto C, Vila-Aiub MM, Sandoval MV, Menéndez AI, Kreiner JM, Fan L, Caicedo AL, Maughan PJ, Martins BAB, Mika J, Collavo A, Merotto A, Subramanian NK, Bagavathiannan MV, Cutti L, Islam MM, Gill BS, Cicchillo R, Gast R, Soni N, Wright TR, Zastrow-Hayes G, May G, Malone JM, Sehgal D, Kaundun SS, Dale RP, Vorster BJ, Peters B, Lerchl J, Tranel PJ, Beffa R, Fournier-Level A, Jugulam M, Fengler K, Llaca V, Patterson EL, Gaines TA. Current status of community resources and priorities for weed genomics research. Genome Biol 2024; 25:139. [PMID: 38802856 PMCID: PMC11129445 DOI: 10.1186/s13059-024-03274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.
Collapse
Affiliation(s)
- Jacob Montgomery
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Sarah Morran
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Dana R MacGregor
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - J Scott McElroy
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Paul Neve
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Célia Neto
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Martin M Vila-Aiub
- IFEVA-Conicet-Department of Ecology, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Analia I Menéndez
- Department of Ecology, Faculty of Agronomy, University of Buenos Aires, Buenos Aires, Argentina
| | - Julia M Kreiner
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Longjiang Fan
- Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Ana L Caicedo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Peter J Maughan
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | - Jagoda Mika
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Aldo Merotto
- Department of Crop Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Nithya K Subramanian
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Luan Cutti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Robert Cicchillo
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Roger Gast
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Neeta Soni
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Terry R Wright
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | | | - Gregory May
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Jenna M Malone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Deepmala Sehgal
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Shiv Shankhar Kaundun
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Richard P Dale
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Barend Juan Vorster
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Bodo Peters
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Roland Beffa
- Senior Scientist Consultant, Herbicide Resistance Action Committee / CropLife International, Liederbach, Germany
| | | | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Kevin Fengler
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Victor Llaca
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Eric L Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
13
|
Chen K, Yang H, Wu D, Peng Y, Lian L, Bai L, Wang L. Weed biology and management in the multi-omics era: Progress and perspectives. PLANT COMMUNICATIONS 2024; 5:100816. [PMID: 38219012 PMCID: PMC11009161 DOI: 10.1016/j.xplc.2024.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Weeds pose a significant threat to crop production, resulting in substantial yield reduction. In addition, they possess robust weedy traits that enable them to survive in extreme environments and evade human control. In recent years, the application of multi-omics biotechnologies has helped to reveal the molecular mechanisms underlying these weedy traits. In this review, we systematically describe diverse applications of multi-omics platforms for characterizing key aspects of weed biology, including the origins of weed species, weed classification, and the underlying genetic and molecular bases of important weedy traits such as crop-weed interactions, adaptability to different environments, photoperiodic flowering responses, and herbicide resistance. In addition, we discuss limitations to the application of multi-omics techniques in weed science, particularly compared with their extensive use in model plants and crops. In this regard, we provide a forward-looking perspective on the future application of multi-omics technologies to weed science research. These powerful tools hold great promise for comprehensively and efficiently unraveling the intricate molecular genetic mechanisms that underlie weedy traits. The resulting advances will facilitate the development of sustainable and highly effective weed management strategies, promoting greener practices in agriculture.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haona Yang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Di Wu
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yajun Peng
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lei Lian
- Qingdao Kingagroot Compounds Co. Ltd, Qingdao 266000, China
| | - Lianyang Bai
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou 510715, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Lifeng Wang
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou 510715, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
14
|
Liao M, Jiang M, Wang X, Hu W, Zhao N, Cao H. The Cys-2088-Arg mutation in the ACCase gene and enhanced metabolism confer cyhalofop-butyl resistance in Chinese sprangletop (Leptochloa chinensis). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105826. [PMID: 38582590 DOI: 10.1016/j.pestbp.2024.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 04/08/2024]
Abstract
Acetyl-CoA carboxylase (ACCase)-inhibiting herbicides are among the most commonly used herbicides to control grassy weeds, especially Leptochloa chinensis, in rice fields across China. Herein, we collected a suspected resistant (R) population of L. chinensis (HFLJ16) from Lujiang county in Anhui Province. Whole plant dose response tests showed that, compared with the susceptible (S) population, the R population showed high resistance to cyhalofop-butyl (22-fold) and displayed cross-resistance to metamifop (9.7-fold), fenoxaprop-P-ethyl (18.7-fold), quizalofop-P-ethyl (7.6-fold), clodinafop-propargyl (12-fold) and clethodim (8.4-fold). We detected an amino acid substitution (Cys-2088-Arg) in the ACCase of resistant L. chinensis. However, ACCase gene expression levels were not significantly different (P > 0.05) between R plants and S plants, without or with cyhalofop-butyl treatment. Furthermore, pretreatment with piperonyl butoxide (PBO, a cytochrome P450 monooxygenase (CYP450) inhibitor) or 4-chloro-7-nitrobenzoxadiazole (NBD-Cl, a glutathione-S-transferase (GST) inhibitor), inhibited the resistance of the R population to cyhalofop-butyl significantly (by approximately 60% and 26%, respectively). Liquid chromatography tandem mass spectrometry analysis showed that R plants metabolized cyhalofop-butyl and cyhalofop acid (its metabolite) significantly faster than S plants. Three CYP450 genes, one GST gene, and two ABC transporter genes were induced by cyhalofop-butyl and were overexpressed in the R population. Overall, GST-associated detoxification, CYP450 enhancement, and target-site gene mutation are responsible for the resistance of L. chinensis to cyhalofop-butyl.
Collapse
Affiliation(s)
- Min Liao
- Anhui Province key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Minghao Jiang
- Anhui Province key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xumiao Wang
- Anhui Province key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wei Hu
- Anhui Province key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ning Zhao
- Anhui Province key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Anhui Province key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
15
|
Iwakami S, Ishizawa H, Sugiura K, Kashiwagi K, Oga T, Niwayama S, Uchino A. Syntenic analysis of ACCase loci and target-site-resistance mutations in cyhalofop-butyl resistant Echinochloa crus-galli var. crus-galli in Japan. PEST MANAGEMENT SCIENCE 2024; 80:627-636. [PMID: 37743410 DOI: 10.1002/ps.7789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Recently, suspected cyhalofop-butyl-resistant populations of allohexaploid weed Echinochloa crus-galli var. crus-galli were discovered in rice fields in Aichi Prefecture, Japan. Analyzing the target-site ACCase genes of cyhalofop-butyl helps understand the resistance mechanism. However, in E. crus-galli, the presence of multiple ACCase genes and the lack of detailed gene investigations have complicated the analysis of target-site genes. Therefore, in this study, we characterized the herbicide response of E. crus-galli lines and thoroughly characterized the ACCase genes, including the evaluation of gene mutations in the ACCase genes of each line. RESULT Four suspected resistant lines collected from Aichi Prefecture showed varying degrees of resistance to cyhalofop-butyl and other FOP-class ACCase inhibitors but were sensitive to herbicides with other modes of action. Through genomic analysis, six ACCase loci were identified in the E. crus-galli genome. We renamed each gene based on its syntenic relationship with other ACCase genes in the Poaceae species. RNA-sequencing analysis revealed that all ACCase genes, except the pseudogenized copy ACCase2A, were transcribed at a similar level in the shoots of E. crus-galli. Mutations known to confer resistance to FOP-class herbicides, that is W1999C, W2027C/S and I2041N, were found in all resistant lines in either ACCase1A, ACCase1B or ACCase2C. CONCLUSION In this study, we found that the E. crus-galli lines were resistant exclusively to ACCase-inhibiting herbicides, with a target-site resistance mutation in the ACCase gene. Characterization of ACCase loci in E. crus-galli provides a basis for further research on ACCase herbicide resistance in Echinochloa spp. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Satoshi Iwakami
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Kyoto, Japan
| | - Hinata Ishizawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Kyoto, Japan
| | - Kai Sugiura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Kyoto, Japan
| | | | - Toshiya Oga
- Aichi Agricultural Research Center, Nagakute, Japan
| | | | - Akira Uchino
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsu, Japan
| |
Collapse
|
16
|
Qu K, Liu A, Yin M, Mu W, Wu S, Hu H, Chen J, Su X, Dou Q, Ren G. A genome assembly for Orinus kokonorica provides insights into the origin, adaptive evolution and further diversification of two closely related grass genera. Commun Biol 2023; 6:1223. [PMID: 38042963 PMCID: PMC10693610 DOI: 10.1038/s42003-023-05620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
Ancient whole-genome duplication (WGD) or polyploidization is prevalent in plants and has played a crucial role in plant adaptation. However, the underlying genomic basis of ecological adaptation and subsequent diversification after WGD are still poorly understood in most plants. Here, we report a chromosome-scale genome assembly for the genus Orinus (Orinus kokonorica as representative) and preform comparative genomics with its closely related genus Cleistogenes (Cleistogenes songorica as representative), both belonging to a newly named subtribe Orininae of the grass subfamily Chloridoideae. The two genera may share one paleo-allotetraploidy event before 10 million years ago, and the two subgenomes of O. kokonorica display neither fractionation bias nor global homoeolog expression dominance. We find substantial genome rearrangements and extensive structural variations (SVs) between the two species. With comparative transcriptomics, we demonstrate that functional innovations of orthologous genes may have played an important role in promoting adaptive evolution and diversification of the two genera after polyploidization. In addition, copy number variations and extensive SVs between orthologs of flower and rhizome related genes may contribute to the morphological differences between the two genera. Our results provide new insights into the adaptive evolution and subsequent diversification of the two genera after polyploidization.
Collapse
Affiliation(s)
- Kunjing Qu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ai Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Mou Yin
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Wenjie Mu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shuang Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Hongyin Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jinyuan Chen
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China
| | - Xu Su
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China
| | - Quanwen Dou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Guangpeng Ren
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
17
|
Ju B, Liu M, Fang Y, Liu L, Pan L. First Report on Resistance to HPPD Herbicides Mediated by Nontarget-Site Mechanisms in the Grass Leptochloa chinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17669-17677. [PMID: 37889480 DOI: 10.1021/acs.jafc.3c04323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The emergence of 4-hydroxyphenylpyruvate dioxygenase (HPPD) herbicides as efficacious target-site herbicides has been noteworthy. In recent years, only four species of broadleaf weeds have developed resistance due to the long-term widespread use of HPPD herbicides. This study represents the first reported instance of a grass weed exhibiting resistance to HPPD inhibitors. We identified a new HPPD-resistant Chinese sprangletop [Leptochloa chinensis (L.) Nees] population (R population). At the recommended dose of tripyrasulfone, the inhibition rate of the R population was only half that of the sensitive population (S). The mechanism underlying resistance does not involve target-site resistance triggered by amino acid mutations or depend on disparities within the HPPD INHIBITOR SENSITIVE 1 (HIS1) gene. The impetus for resistance appears to be interlinked with the metabolic activities of cytochrome P450 monooxygenase (P450) and glutathione S-transferase (GST) family genes. Following RNA sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR) validation, the study suggests that five P450 genes, CYP71C1, CYP74A2, CYP72A1, CYP84A1, and CYP714C2, alongside a single GST gene GSTF1, may be implicated in the process of metabolic detoxification.
Collapse
Affiliation(s)
- Boming Ju
- Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Min Liu
- Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Yuhang Fang
- Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Leicheng Liu
- Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Lang Pan
- Hunan Agricultural University, Changsha 410128, People's Republic of China
| |
Collapse
|
18
|
Zhang L, Chen K, Li T, Yuan S, Li C, Bai L, Wang L. Metabolomic and transcriptomic analyses of rice plant interaction with invasive weed Leptochloa chinensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1271303. [PMID: 37818319 PMCID: PMC10560989 DOI: 10.3389/fpls.2023.1271303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 10/12/2023]
Abstract
Introduction Leptochloa chinensis is an annual weed in paddy fields, which can engage in competition with rice, leading to a severe yield reduction. However, theunderlying mechanism governing this interaction remain unknown. Methods In this study, we investigated the mutual inhibition between rice and the weed undermono-culture and co-culture conditions. We found that the root exudates of both species played essential roles in mediating the mutual inhibition. Further metabolomic analysis identified a significant number of differential metabolites. These metabolites were predominantly enriched in the phenylpropanoid and flavonoid biosynthesis pathways in weed and rice. Transcriptomic analysis revealed that the differentially expressed genes responding to the interaction were also enriched in these pathways. Results Phenylpropanoid and flavonoid biosynthesis pathways are associated with allelopathy, indicating their pivotal role in the response of rice-weed mutual inhibition. Discussion Our findings shed light on the conserved molecular responses of rice and L. chinensis during theirinteraction, provide evidence to dissect the mechanisms underlying the allelopathic interaction and offer potential strategies for weed management in rice paddies.
Collapse
Affiliation(s)
- Liang Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
| | - Ke Chen
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Tianrui Li
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Shuren Yuan
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chenyang Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Lianyang Bai
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
| | - Lifeng Wang
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
| |
Collapse
|
19
|
Yu X, Qin M, Qu M, Jiang Q, Guo S, Chen Z, Shen Y, Fu G, Fei Z, Huang H, Gao L, Yao X. Genomic analyses reveal dead-end hybridization between two deeply divergent kiwifruit species rather than homoploid hybrid speciation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1528-1543. [PMID: 37258460 DOI: 10.1111/tpj.16336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Despite the importance of hybridization in evolution, the evolutionary consequence of homoploid hybridizations in plants remains poorly understood. Specially, homoploid hybridization events have been rarely documented due to a lack of genomic resources and methodological limitations. Actinidia zhejiangensis was suspected to have arisen from hybridization of Actinidia eriantha and Actinidia hemsleyana or Actinidia rufa. However, this species was very rare in nature and exhibited sympatric distribution with its potential parent species, which implied it might be a spontaneous hybrid of ongoing homoploid hybridization. Here, we illustrate the dead-end homoploid hybridization and genomic basis of isolating barriers between A. eriantha and A. hemsleyana through whole genome sequencing and population genomic analyses. Chromosome-scale genome assemblies of A. zhejiangensis and A. hemsleyana were generated. The chromosomes of A. zhejiangensis are confidently assigned to the two haplomes, and one of them originates from A. eriantha and the other originates from A. hemsleyana. Whole genome resequencing data reveal that A. zhejiangensis are mainly F1 hybrids of A. hemsleyana and A. eriantha and gene flow initiated about 0.98 million years ago, implying both strong genetic barriers and ongoing hybridization between these two deeply divergent kiwifruit species. Five inversions containing genes involved in pollen germination and pollen tube growth might account for the fertility breakdown of hybrids between A. hemsleyana and A. eriantha. Despite its distinct morphological traits and long recurrent hybrid origination, A. zhejiangensis does not initiate speciation. Collectively, our study provides new insights into homoploid hybridization in plants and provides genomic resources for evolutionary and functional genomic studies of kiwifruit.
Collapse
Affiliation(s)
- Xiaofen Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Mengyun Qin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghao Qu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quan Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sumin Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Zhenghai Chen
- Forest Resources Monitoring Center of Zhejiang Province, Hangzhou, Zhejiang, 310020, China
| | - Yufang Shen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Guodong Fu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, 14853, USA
| | - Hongwen Huang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Xiaohong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
20
|
Chen K, Yang H, Peng Y, Liu D, Zhang J, Zhao Z, Wu L, Lin T, Bai L, Wang L. Genomic analyses provide insights into the polyploidization-driven herbicide adaptation in Leptochloa weeds. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37154437 PMCID: PMC10363762 DOI: 10.1111/pbi.14065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
Polyploidy confers a selective advantage under stress conditions; however, whether polyploidization mediates enhanced herbicide adaptation remains largely unknown. Tetraploid Leptochloa chinensis is a notorious weed in the rice ecosystem, causing severe yield loss in rice. In China, L. chinensis has only one sister species, the diploid L. panicea, whose damage is rarely reported. To gain insights into the effects of polyploidization on herbicide adaptation, we first assembled a high-quality genome of L. panicea and identified genome structure variations with L. chinensis. Moreover, we identified herbicide-resistance genes specifically expanded in L. chinensis, which may confer a greater herbicide adaptability in L. chinensis. Analysis of gene retention and loss showed that five herbicide target-site genes and several herbicide nontarget-site resistance gene families were retained during polyploidization. Notably, we identified three pairs of polyploidization-retained genes including LcABCC8, LcCYP76C1 and LcCYP76C4 that may enhance herbicide resistance. More importantly, we found that both copies of LcCYP76C4 were under herbicide selection during the spread of L. chinensis in China. Furthermore, we identified another gene potentially involved in herbicide resistance, LcCYP709B2, which is also retained during polyploidization and under selection. This study provides insights into the genomic basis of the enhanced herbicide adaptability of Leptochloa weeds during polyploidization and provides guidance for the precise and efficient control of polyploidy weeds.
Collapse
Affiliation(s)
- Ke Chen
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Haona Yang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yajun Peng
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ducai Liu
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | | | - Zhenghong Zhao
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Lamei Wu
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Tao Lin
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Lianyang Bai
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lifeng Wang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
21
|
Huang Y, Wu D, Huang Z, Li X, Merotto A, Bai L, Fan L. Weed genomics: yielding insights into the genetics of weedy traits for crop improvement. ABIOTECH 2023; 4:20-30. [PMID: 37220539 PMCID: PMC10199979 DOI: 10.1007/s42994-022-00090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/06/2022] [Indexed: 05/25/2023]
Abstract
Weeds cause tremendous economic and ecological damage worldwide. The number of genomes established for weed species has sharply increased during the recent decade, with some 26 weed species having been sequenced and de novo genomes assembled. These genomes range from 270 Mb (Barbarea vulgaris) to almost 4.4 Gb (Aegilops tauschii). Importantly, chromosome-level assemblies are now available for 17 of these 26 species, and genomic investigations on weed populations have been conducted in at least 12 species. The resulting genomic data have greatly facilitated studies of weed management and biology, especially origin and evolution. Available weed genomes have indeed revealed valuable weed-derived genetic materials for crop improvement. In this review, we summarize the recent progress made in weed genomics and provide a perspective for further exploitation in this emerging field.
Collapse
Affiliation(s)
- Yujie Huang
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058 China
| | - Dongya Wu
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058 China
| | - Zhaofeng Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xiangyu Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Aldo Merotto
- Department of Crop Sciences, Agricultural School Federal University of Rio Grande do Sul, Porto Alegre, 91540-000 Brazil
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Sciences, Changshang, 410125 China
| | - Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
22
|
Wu L, Wu C, Yang H, Yang J, Wang L, Zhou S. Proteomic Analysis Comparison on the Ecological Adaptability of Quinclorac-Resistant Echinochloa crus-galli. PLANTS (BASEL, SWITZERLAND) 2023; 12:696. [PMID: 36840044 PMCID: PMC9968053 DOI: 10.3390/plants12040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Barnyardgrass (Echinochloa crus-galli L.) is the most serious weed threatening rice production, and its effects are aggravated by resistance to the quinclorac herbicide in the Chinese rice fields. This study conducted a comparative proteomic characterization of the quinclorac-treated and non-treated resistant and susceptible E. crus-galli using isobaric tags for relative and absolute quantification (iTRAQ). The results indicated that the quinclorac-resistant E. crus-galli had weaker photosynthesis and a weaker capacity to mitigate abiotic stress, which suggested its lower environmental adaptability. Quinclorac treatment significantly increased the number and expression of the photosynthesis-related proteins in the resistant E. crus-galli and elevated its photosynthetic parameters, indicating a higher photosynthetic rate compared to those of the susceptible E. crus-galli. The improved adaptability of the resistant E. crus-galli to quinclorac stress could be attributed to the observed up-regulated expression of eight herbicide resistance-related proteins and the down-regulation of two proteins associated with abscisic acid biosynthesis. In addition, high photosynthetic parameters and low glutathione thiotransferase (GST) activity were observed in the quinclorac-resistant E. crus-galli compared with the susceptible biotype, which was consistent with the proteomic sequencing results. Overall, this study demonstrated that the resistant E. crus-galli enhanced its adaptability to quinclorac by improving the photosynthetic efficiency and GST activity.
Collapse
Affiliation(s)
- Lamei Wu
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Can Wu
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haona Yang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiangshan Yang
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lifeng Wang
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shangfeng Zhou
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
23
|
Sun Y, Liu Y, Shi J, Wang L, Liang C, Yang J, Chen J, Chen M. Biased mutations and gene losses underlying diploidization of the tetraploid broomcorn millet genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:787-801. [PMID: 36575912 DOI: 10.1111/tpj.16085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Broomcorn millet (Panicum miliaceum L.) is one of the earliest domesticated crops, and is a valuable resource to secure food diversity and combat drought stresses under the global warming scenario. However, due to the absence of extant diploid progenitors, the polyploidy genome of broomcorn millet remains poorly understood. Here, we report the chromosome-scale genome assembly of broomcorn millet. We divided the broomcorn millet genome into two subgenomes using the genome sequence of Panicum hallii, a diploid relative of broomcorn millet. Our analyses revealed that the two subgenomes diverged at ~4.8 million years ago (Mya), while the allotetraploidization of broomcorn millet may have occurred about ~0.48 Mya, suggesting that broomcorn millet is a relatively recent allotetraploid. Comparative analyses showed that subgenome B was larger than subgenome A in size, which was caused by the biased accumulation of long terminal repeat retrotransposons in the progenitor of subgenome B before polyploidization. Notably, the accumulation of biased mutations in the transposable element-rich subgenome B led to more gene losses. Although no significant dominance of either subgenome was observed in the expression profiles of broomcorn millet, we found the minimally expressed genes in P. hallii tended to be lost during diploidization of broomcorn millet. These results suggest that broomcorn millet is at the early stage of diploidization and that mutations likely occurred more on genes that were marked with lower expression levels.
Collapse
Affiliation(s)
- Yanling Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Yang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jinfeng Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Lun Wang
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, 030031, Taiyuan, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, 201602, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Jinfeng Chen
- University of Chinese Academy of Sciences, 100039, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| |
Collapse
|
24
|
Zhang Y, Chen L, Song W, Cang T, Xu M, Wu C. Diverse mechanisms associated with cyhalofop-butyl resistance in Chinese sprangletop ( Leptochloa chinensis (L.) Nees): Characterization of target-site mutations and metabolic resistance-related genes in two resistant populations. FRONTIERS IN PLANT SCIENCE 2022; 13:990085. [PMID: 36518516 PMCID: PMC9742530 DOI: 10.3389/fpls.2022.990085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/14/2022] [Indexed: 05/25/2023]
Abstract
Resistance of Chinese sprangletop (Leptochloa chinensis (L.) Nees) to the herbicide cyhalofop-butyl has recently become a severe problem in rice cultivation. However, the molecular mechanisms of target-site resistance (TSR) in cyhalofop-butyl-resistant L. chinensis as well as the underlying non-target-site resistance (NTSR) have not yet been well-characterized. This study aimed to investigate cyhalofop-butyl resistance mechanisms using one susceptible population (LC-S) and two resistant populations (LC-1701 and LC-1704) of L. chinensis. We analyzed two gene copies encoding the entire carboxyltransferase (CT) domain of chloroplastic acetyl-CoA carboxylase (ACCase) from each population. Two non-synonymous substitutions were detected in the resistant L. chinensis populations (Trp2027-Cys in the ACCase1 of LC-1701 and Leu1818-Phe in the ACCase2 of LC-1704), which were absent in LC-S. As Trp2027-Cys confers resistance to ACCase-inhibiting herbicides, the potential relationship between the novel Leu1818-Phe mutation and cyhalofop-butyl resistance in LC-1704 was further explored by single-nucleotide polymorphism (SNP) detection. Metabolic inhibition assays indicated that cytochrome P450 monooxygenases (P450s) and glutathione S-transferases (GSTs) contributed to cyhalofop-butyl resistance in specific resistant populations. RNA sequencing showed that the P450 genes CYP71Z18, CYP71C4, CYP71C1, CYP81Q32, and CYP76B6 and the GST genes GSTF11, GSTF1, and GSTU6 were upregulated in at least one resistant population, which indicated their putative roles in cyhalofop-butyl resistance of L. chinensis. Correlation analyses revealed that the constitutive or inducible expression patterns of CYP71C4, CYP71C1, GSTF1, and GSTU6 in L. chinensis were strongly associated with the resistant phenotype. For this reason, attention should be directed towards these genes to elucidate metabolic resistance to cyhalofop-butyl in L. chinensis. The findings of this study improve the understanding of mechanisms responsible for resistance to ACCase-inhibiting herbicides in grass-weed species at the molecular level, thus aiding in the development of weed management strategies that delay the emergence of resistance to this class of pest control products.
Collapse
|