1
|
Vanneste S, Pei Y, Friml J. Mechanisms of auxin action in plant growth and development. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00851-2. [PMID: 40389696 DOI: 10.1038/s41580-025-00851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/21/2025]
Abstract
The phytohormone auxin is a major signal coordinating growth and development in plants. The variety of its effects arises from its ability to form local auxin maxima and gradients within tissues, generated through directional cell-to-cell transport and elaborate metabolic control. These auxin distribution patterns instruct cells in a context-dependent manner to undergo predefined developmental transitions. In this Review, we discuss advances in auxin action at the level of homeostasis and signalling. We highlight key insights into the structural basis of PIN-mediated intercellular auxin transport and explore two novel non-transcriptional auxin signalling mechanisms: one involving intracellular Ca2+ transients and another involving cell-surface auxin perception that mediates global, ultrafast phosphorylation. Furthermore, we examine emerging evidence indicating the involvement of cyclic adenosine monophosphate as a second messenger in the transcriptional auxin response. Together, these recent developments in auxin research have profoundly deepened our understanding of the complex and diverse activities of auxin in plant growth and development.
Collapse
Affiliation(s)
- Steffen Vanneste
- HortiCell, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Yuanrong Pei
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
2
|
Biała-Leonhard W, Bigos A, Brezovsky J, Jasiński M. Message hidden in α-helices-toward a better understanding of plant ABCG transporters' multispecificity. PLANT PHYSIOLOGY 2025; 198:kiaf146. [PMID: 40220341 PMCID: PMC12117657 DOI: 10.1093/plphys/kiaf146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/10/2025] [Indexed: 04/14/2025]
Affiliation(s)
- Wanda Biała-Leonhard
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Aleksandra Bigos
- Faculty of Biology, Department of Gene Expression, Laboratory of Biomolecular Interactions and Transport, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Jan Brezovsky
- Faculty of Biology, Department of Gene Expression, Laboratory of Biomolecular Interactions and Transport, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
3
|
Hu ZL, Wei H, Sun L, Russinova E. Plant steroids on the move: mechanisms of brassinosteroid export. Trends Biochem Sci 2025:S0968-0004(25)00052-0. [PMID: 40251078 DOI: 10.1016/j.tibs.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 04/20/2025]
Abstract
Brassinosteroids (BRs) are essential plant steroidal hormones that regulate growth and development. The recent discoveries of ATP-binding cassette subfamily B (ABCB) members, ABCB19 and ABCB1, as BR transporters highlight the significance of active export to the apoplast in maintaining BR homeostasis and enabling effective signaling. This review focuses on the latest progress in understanding ABCB-mediated BR transport, with particular attention to the structural and functional characterization of arabidopsis ABCB19 and ABCB1. These findings reveal both conserved and distinct features in substrate recognition and transport mechanisms, providing valuable insights into their roles in hormonal regulation. Additionally, the evolutionary conservation of ABC transporters in mediating steroid-based signaling across biological kingdoms underscores their fundamental biological significance.
Collapse
Affiliation(s)
- Zi-Liang Hu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hong Wei
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, China
| | - Linfeng Sun
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
4
|
Zhang Y, Anfang M, Rowe JH, Rizza A, Li Z, Su N, Bar H, Charrier L, Geisler M, Jones AM, Shani E. ABA importers ABCG17 and ABCG18 redundantly regulate seed size in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70096. [PMID: 40106270 PMCID: PMC7617562 DOI: 10.1111/tpj.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
The stress hormone abscisic acid (ABA) plays a crucial role in mediating plant responses to the environment and regulating plant development. In this study, we demonstrate that two ABA importers, ABCG17 and ABCG18, control seed size by regulating the ABA levels transported into the embryo. Double knockdown of ABCG17 and ABCG18 resulted in lower ABA accumulation in the embryo, wider siliques, and increased overall seed size. Leaf phloem-specific ABA induction in the aba2-1 background showed that ABA could move from the vasculature to control seed size. ABCG17 and ABCG18 are expressed in leaves, and the reproductive organs septum, and valves but not in the developing seeds, suggesting that ABCG17 and ABCG18 affect seed size maternally. Together, the results shed light on the molecular mechanisms by which ABA is transported to the embryo to determine seed size.
Collapse
Affiliation(s)
- Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - James H Rowe
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Annalisa Rizza
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Zhuorong Li
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Su
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hamutal Bar
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Laurence Charrier
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
5
|
Li Y, Chen J, Zhi J, Huang D, Zhang Y, Zhang L, Duan X, Zhang P, Qiu S, Geng J, Feng J, Zhang K, Yang X, Gao S, Xia W, Zhou Z, Qiao Y, Li B, Li Q, Li T, Chen W, Xiao Y. The ABC transporter SmABCG1 mediates tanshinones export from the peridermic cells of Salvia miltiorrhiza root. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:135-149. [PMID: 39575678 DOI: 10.1111/jipb.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/26/2024] [Indexed: 01/16/2025]
Abstract
Plants have mechanisms to transport secondary metabolites from where they are biosynthesized to the sites where they function, or to sites such as the vacuole for detoxification. However, current research has mainly focused on metabolite biosynthesis and regulation, and little is known about their transport. Tanshinone, a class diterpenoid with medicinal properties, is biosynthesized in the periderm of Salvia miltiorrhiza roots. Here, we discovered that tanshinone can be transported out of peridermal cells and secreted into the soil environment and that the ABC transporter SmABCG1 is involved in the efflux of tanshinone ⅡA and tanshinone Ⅰ. The SmABCG1 gene is adjacent to the diterpene biosynthesis gene cluster in the S. miltiorrhiza genome. The temporal-spatial expression pattern of SmABCG1 is consistent with tanshinone accumulation profiles. SmABCG1 is located on the plasma membrane and preferentially accumulates in the peridermal cells of S. miltiorrhiza roots. Heterologous expression in Xenopus laevis oocytes demonstrated that SmABCG1 can export tanshinone ⅡA and tanshinone Ⅰ. CRISPR/Cas9-mediated mutagenesis of SmABCG1 in S. miltiorrhiza hairy roots resulted in a significant decrease in tanshinone contents in both hairy roots and the culture medium, whereas overexpression of this gene resulted in increased tanshinone contents. CYP76AH3 transcript levels increased in hairy roots overexpressing SmABCG1 and decreased in knockout lines, suggesting that SmABCG1 may affect the expression of CYP76AH3, indirectly regulating tanshinone biosynthesis. Finally, tanshinone ⅡA showed cytotoxicity to Arabidopsis roots. These findings offer new perspectives on plant diterpenoid transport and provide a new genetic tool for metabolic engineering and synthetic biology research.
Collapse
Affiliation(s)
- Yajing Li
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Junfeng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingyu Zhi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Doudou Huang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuchen Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lei Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xinyi Duan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310000, China
| | - Pan Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaran Geng
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingxian Feng
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ke Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xu Yang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Wenwen Xia
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zheng Zhou
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yuqi Qiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, 201203, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Tingzhao Li
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, 201203, China
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Ying Xiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|