1
|
Abstract
Raman imaging is a microspectroscopic approach revealing the chemistry and structure of plant cell walls in situ on the micro- and nanoscale. The method is based on the Raman effect (inelastic scattering) that takes place when monochromatic laser light interacts with matter. The scattered light conveys a change in energy that is inherent of the involved molecule vibrations. The Raman spectra are thus characteristic for the chemical structure of the molecules and can be recorded spatially ordered with a lateral resolution of about 300 nm. Based on thousands of acquired Raman spectra, images can be assessed using univariate as well as multivariate data analysis approaches. One advantage compared to staining or labeling techniques is that not only one image is obtained as a result but different components and characteristics can be displayed in several images. Furthermore, as every pixel corresponds to a Raman spectrum, which is a kind of "molecular fingerprint," the imaging results should always be evaluated and further details revealed by analysis (e.g., band assignment) of extracted spectra. In this chapter, the basic theoretical background of the technique and instrumentation are described together with sample preparation requirements and tips for high-quality plant tissue sections and successful Raman measurements. Typical Raman spectra of the different plant cell wall components are shown as well as an exemplified analysis of Raman data acquired on the model plant Arabidopsis. Important preprocessing methods of the spectra are included as well as single component image generation (univariate) and spectral unmixing by means of multivariate approaches (e.g., vertex component analysis).
Collapse
Affiliation(s)
- Batirtze Prats Mateu
- Department of Nanobiotechnology, Institute of Biophysics, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Bock
- Department of Nanobiotechnology, Institute of Biophysics, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Notburga Gierlinger
- Department of Nanobiotechnology, Institute of Biophysics, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
2
|
Molina-Guerrero CE, de la Rosa G, Castillo-Michel H, Sánchez A, García-Castañeda C, Hernández-Rayas A, Valdez-Vazquez I, Suarez-Vázquez S. Physicochemical Characterization of Wheat Straw during a Continuous Pretreatment Process. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201800107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carlos Eduardo Molina-Guerrero
- Universidad Autónoma de Chihuahua; Facultad de Ciencias Químicas; Circuito 1, Nuevo Campus Universitario 31125 Chihuahua México
- Universidad de Guanajuato; Depto. Ingenierías Química, Electrónica y Biomédica; División de Ciencias e Ingenierías; Campus León, Loma del Bosque 103, Col. Lomas del Campestre, Léon 37150 Guanajuato México
| | - Guadalupe de la Rosa
- Universidad de Guanajuato; Depto. Ingenierías Química, Electrónica y Biomédica; División de Ciencias e Ingenierías; Campus León, Loma del Bosque 103, Col. Lomas del Campestre, Léon 37150 Guanajuato México
- The University of Texas; UC Center for Environmental Implications of Nanotechnology (UC CEIN); 500 West University Avenue 79968 El Paso, TX USA
| | | | - Arturo Sánchez
- Unidad de Ingeniería Avanzada; Laboratorio de Futuros en Bioenergía; Centro de Investigación y Estudios Avanzados del IPN; Av. del Bosque 1145, Col. El Bajío, Zapopan 45019 Jalisco México
| | - Concepción García-Castañeda
- CONACyT-Universidad de Guanajuato; Loma del Bosque 103, Col. Lomas del Campestre. León 37150 Guanajuato México
| | - Angélica Hernández-Rayas
- Universidad de Guanajuato; Depto. de Ingeniería Física. División de Ciencias e Ingenierías; Campus León, Loma del Bosque 103, Col Lomas del Campestre, León 37150 Guanajuato México
| | - Idania Valdez-Vazquez
- Universidad Nacional Autónoma de México; Unidad Académica Juriquilla, Instituto de Ingeniería; Blvd. Juriquilla 3001 76230 Querétaro México
| | - Santiago Suarez-Vázquez
- Universidad Autónoma de Nuevo León; Facultad de Ingeniería Civil; Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455 Nuevo León México
| |
Collapse
|
3
|
Çetinkol ÖP, Smith-Moritz AM, Cheng G, Lao J, George A, Hong K, Henry R, Simmons BA, Heazlewood JL, Holmes BM. Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks. PLoS One 2012; 7:e52820. [PMID: 23300786 PMCID: PMC3532498 DOI: 10.1371/journal.pone.0052820] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 11/23/2012] [Indexed: 11/19/2022] Open
Abstract
Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD) and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR) spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks.
Collapse
Affiliation(s)
- Özgül Persil Çetinkol
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Andreia M. Smith-Moritz
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Gang Cheng
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Joint BioEnergy Institute, Sandia National Laboratory, Livermore, California, United States of America
| | - Jeemeng Lao
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Anthe George
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Joint BioEnergy Institute, Sandia National Laboratory, Livermore, California, United States of America
| | - Kunlun Hong
- Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
| | - Blake A. Simmons
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Joint BioEnergy Institute, Sandia National Laboratory, Livermore, California, United States of America
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
| | - Joshua L. Heazlewood
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| | - Bradley M. Holmes
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Joint BioEnergy Institute, Sandia National Laboratory, Livermore, California, United States of America
| |
Collapse
|
4
|
Determination of glucose and ethanol after enzymatic hydrolysis and fermentation of biomass using Raman spectroscopy. Anal Chim Acta 2009; 653:200-6. [DOI: 10.1016/j.aca.2009.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/03/2009] [Accepted: 09/08/2009] [Indexed: 11/22/2022]
|
5
|
Gierlinger N, Goswami L, Schmidt M, Burgert I, Coutand C, Rogge T, Schwanninger M. In Situ FT-IR Microscopic Study on Enzymatic Treatment of Poplar Wood Cross-Sections. Biomacromolecules 2008; 9:2194-201. [DOI: 10.1021/bm800300b] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Notburga Gierlinger
- Department of Biomaterials, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany, Institut National de la Recherche Agronomique (INRA), umr Physiologie Intégrative de l’Arbre Fruitier et Forestier (PIAF), 234 av. du Brézet, 63100 Clermont-Ferrand, France, Forschungszentrum Karlsruhe GmbH, Institut für Mikrostrukturtechnik, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, and Department of Chemistry, Boku - University of Natural Resources and Applied Life Sciences,
| | - Luna Goswami
- Department of Biomaterials, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany, Institut National de la Recherche Agronomique (INRA), umr Physiologie Intégrative de l’Arbre Fruitier et Forestier (PIAF), 234 av. du Brézet, 63100 Clermont-Ferrand, France, Forschungszentrum Karlsruhe GmbH, Institut für Mikrostrukturtechnik, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, and Department of Chemistry, Boku - University of Natural Resources and Applied Life Sciences,
| | - Martin Schmidt
- Department of Biomaterials, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany, Institut National de la Recherche Agronomique (INRA), umr Physiologie Intégrative de l’Arbre Fruitier et Forestier (PIAF), 234 av. du Brézet, 63100 Clermont-Ferrand, France, Forschungszentrum Karlsruhe GmbH, Institut für Mikrostrukturtechnik, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, and Department of Chemistry, Boku - University of Natural Resources and Applied Life Sciences,
| | - Ingo Burgert
- Department of Biomaterials, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany, Institut National de la Recherche Agronomique (INRA), umr Physiologie Intégrative de l’Arbre Fruitier et Forestier (PIAF), 234 av. du Brézet, 63100 Clermont-Ferrand, France, Forschungszentrum Karlsruhe GmbH, Institut für Mikrostrukturtechnik, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, and Department of Chemistry, Boku - University of Natural Resources and Applied Life Sciences,
| | - Catherine Coutand
- Department of Biomaterials, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany, Institut National de la Recherche Agronomique (INRA), umr Physiologie Intégrative de l’Arbre Fruitier et Forestier (PIAF), 234 av. du Brézet, 63100 Clermont-Ferrand, France, Forschungszentrum Karlsruhe GmbH, Institut für Mikrostrukturtechnik, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, and Department of Chemistry, Boku - University of Natural Resources and Applied Life Sciences,
| | - Tilmann Rogge
- Department of Biomaterials, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany, Institut National de la Recherche Agronomique (INRA), umr Physiologie Intégrative de l’Arbre Fruitier et Forestier (PIAF), 234 av. du Brézet, 63100 Clermont-Ferrand, France, Forschungszentrum Karlsruhe GmbH, Institut für Mikrostrukturtechnik, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, and Department of Chemistry, Boku - University of Natural Resources and Applied Life Sciences,
| | - Manfred Schwanninger
- Department of Biomaterials, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany, Institut National de la Recherche Agronomique (INRA), umr Physiologie Intégrative de l’Arbre Fruitier et Forestier (PIAF), 234 av. du Brézet, 63100 Clermont-Ferrand, France, Forschungszentrum Karlsruhe GmbH, Institut für Mikrostrukturtechnik, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, and Department of Chemistry, Boku - University of Natural Resources and Applied Life Sciences,
| |
Collapse
|
6
|
CAO YU, SHEN DEYAN, LU YONGLAI, HUANG YONG. A Raman-scattering study on the net orientation of biomacromolecules in the outer epidermal walls of mature wheat stems (Triticum aestivum). ANNALS OF BOTANY 2006; 97:1091-4. [PMID: 16533832 PMCID: PMC2803402 DOI: 10.1093/aob/mcl059] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Raman spectroscopy can be used to examine the orientation of biomacromolecules using relatively thick samples of material, whereas more traditional means of analysing molecular structure require prior isolation of the components, which often destroys morphological features. In this study, Raman spectroscopy was used to examine the outer epidermal cell walls of wheat stems. METHODS Polarized Raman spectra from the epidermal cell walls of wheat stem were obtained using near-infrared-Fourier transform Raman scattering. By comparing spectra taken with Raman light polarized perpendicular or parallel to the longitudinal axis of the cell, the orientation of macromolecules in the cell wall was investigated. KEY RESULTS The net orientation of macromolecules varies in the epidermal cell walls of the different components of wheat stem. The net orientation of cellulose is parallel to the longitudinal axis of the cells, whereas the xylan and the phenylpropane units of lignin tend to lie perpendicular to the longitudinal axis of the cells, i.e. perpendicular to the net orientation of cellulose in the epidermal cell walls. CONCLUSIONS The results imply that cellulose, lignin and xylan form a relatively ordered network that defines the mechanical and structural properties of the cell wall. Such results are likely to have a significant impact on the formulation of definitive models for the static and growing cell wall.
Collapse
Affiliation(s)
- YU CAO
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Material, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China and Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- For correspondence. E-mail ;
| | - DEYAN SHEN
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Material, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China and Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
| | - YONGLAI LU
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Material, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China and Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
| | - YONG HUANG
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Material, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China and Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- For correspondence. E-mail ;
| |
Collapse
|
7
|
Current awareness in phytochemical analysis. PHYTOCHEMICAL ANALYSIS : PCA 2005; 16:231-8. [PMID: 15997858 DOI: 10.1002/pca.795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|