1
|
Hupfer ML, Meyer R, Deckert-Gaudig T, Ghosh S, Skabeev A, Peneva K, Deckert V, Dietzek B, Presselt M. Supramolecular Reorientation During Deposition Onto Metal Surfaces of Quasi-Two-Dimensional Langmuir Monolayers Composed of Bifunctional Amphiphilic, Twisted Perylenes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11018-11026. [PMID: 34506143 DOI: 10.1021/acs.langmuir.1c01525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supramolecular dye structures, which are often ruled by π-π interactions between planar chromophores, crucially determine the optoelectronic properties of layers and interfaces. Here, we present the interfacial assembly of perylene monoanhydride and monoimide that do not feature a planar chromophore but contain chlorine substituents in the bay positions to yield twisted chromophores and hence modified π-stacking. The assembly of the twisted perylene monoanhydride and monoimide is driven by their amphiphilicity that ensures proper Langmuir layer formation. The shielding of the hydrophilic segment upon attaching an alkyl chain to the imide moiety yielded a more rigid Langmuir layer, even though the degrees of freedom were increased due to this modification. For the characterization of the Langmuir layer's supramolecular structure, the layers were deposited onto glass, silver, and gold substrates via Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques and were investigated with atomic force microscopy and surface-enhanced resonance Raman spectroscopy (SERRS). From the similarity between all SERR spectra of the LS and LB layers, we concluded that the perylenes have changed their orientation upon LB deposition to bind to the silver surface of the SERRS substrate via sulfur atoms. In the Langmuir layer, the perylenes, which are π-stacked with half of the twisted chromophores, must already be inclined and cannot achieve full parallel alignment because of the twisting-induced steric hindrance. However, upon rotation, the energetically most favorable antiparallel aligned structures can be formed and bind to the SERRS substrate. Thus, we present, to the best of our knowledge, the first fabrication of quasi-two-dimensional films from twisted amphiphilic perylene monoimides and their reassembly during LB deposition. The relation between the molecular structure, supramolecular interfacial assembly, and its adoption during adsorption revealed here is crucial for the fabrication of defined functionalizations of metal surfaces, which is key to the development of organic (opto)electronic devices.
Collapse
Affiliation(s)
- Maximilian L Hupfer
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Robert Meyer
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Tanja Deckert-Gaudig
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Soumik Ghosh
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745 Jena, Germany
| | - Artem Skabeev
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Kalina Peneva
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Volker Deckert
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Institute of Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843-4242, United States
| | - Benjamin Dietzek
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
- Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745 Jena, Germany
| |
Collapse
|
2
|
Semeraro P, Syrgiannis Z, Bettini S, Giancane G, Guerra F, Fraix A, Bucci C, Sortino S, Prato M, Valli L. Singlet oxygen photo-production by perylene bisimide derivative Langmuir-Schaefer films for photodynamic therapy applications. J Colloid Interface Sci 2019; 553:390-401. [DOI: 10.1016/j.jcis.2019.06.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
|
3
|
Sato T, Awano H, Katagiri H, Pu Y, Takahashi T, Yonetake K. Orientation and Polarized Optical Emission Properties of Platinum(II) Complexes in Smectic Liquid Crystals. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201201388] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takeshi Sato
- Graduate School of Science and Engineering, Yamagata University, 4‐3‐16, Jonan, Yonezawa, Japan, http://www2.yz.yamagata‐u.ac.jp/index‐eng.html
| | - Hiroshi Awano
- Graduate School of Science and Engineering, Yamagata University, 4‐3‐16, Jonan, Yonezawa, Japan, http://www2.yz.yamagata‐u.ac.jp/index‐eng.html
| | - Hiroshi Katagiri
- Graduate School of Science and Engineering, Yamagata University, 4‐3‐16, Jonan, Yonezawa, Japan, http://www2.yz.yamagata‐u.ac.jp/index‐eng.html
| | - Yong‐Jin Pu
- Graduate School of Science and Engineering, Yamagata University, 4‐3‐16, Jonan, Yonezawa, Japan, http://www2.yz.yamagata‐u.ac.jp/index‐eng.html
| | - Tatsuhiro Takahashi
- Graduate School of Science and Engineering, Yamagata University, 4‐3‐16, Jonan, Yonezawa, Japan, http://www2.yz.yamagata‐u.ac.jp/index‐eng.html
| | - Koichiro Yonetake
- Graduate School of Science and Engineering, Yamagata University, 4‐3‐16, Jonan, Yonezawa, Japan, http://www2.yz.yamagata‐u.ac.jp/index‐eng.html
| |
Collapse
|