1
|
Amna Sherin T, Abdul Nazar PV, Savita S, Shahid M, Siddiqui N, Javed S. Computational and experimental insights into the spectroscopy, electronic states, and molecular docking of (2S)-2,6-diaminohexanoic acid [DAHA]. BMC Chem 2025; 19:151. [PMID: 40442770 PMCID: PMC12123746 DOI: 10.1186/s13065-025-01511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
This paper presents a theoretical analysis of the L-Lysine molecule using the DFT (density functional theory) method with a 6-311+ + G(d,p) basis set, a quantum-mechanical atomistic simulation method. The research encompasses the analysis of optimized chemical structure, vibrations, FMO, ELF, NLO, RDG, etc., to study the molecule's intensive properties, stability, and other biological activities. IR and UV spectra were analysed for the spectrochemical study, and the VEDA program was used to determine the PED values. The chemical reactivity of the molecule was identified through analysis of the Frontier molecular orbitals, Fukui, and molecular electrostatic potential. The electron localization function and reduced density gradient were determined to understand bonding and electronic structure. The temperature dependence on the properties of the molecule was estimated. The optical properties of the molecule were discussed by analyzing the non-linear optical property. The feasibility of the molecule as a therapeutic drug was examined using the drug likeness concept. Molecular docking analysis was conducted to acquire the best ligand-receptor complex and to study the molecule's biological activity.
Collapse
Affiliation(s)
- T Amna Sherin
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, Delhi, India
| | - P V Abdul Nazar
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, Delhi, India
| | - Sandhya Savita
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, Delhi, India
- Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nazia Siddiqui
- Department of Chemistry, Dayalbagh Educational Institute, Agra, 282005, Uttar Pradesh, India.
| | - Saleem Javed
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, Delhi, India.
| |
Collapse
|
2
|
Rekik N. Deciphering the abnormal IR spectral density of phthalic acid dimer crystals: Unveiling the role of the dynamical effects of the Davydov coupling and the mechanisms of relaxation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125752. [PMID: 39848029 DOI: 10.1016/j.saa.2025.125752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
To consistently determine the anomalous characteristics of phthalic acid crystal (PAC) derivatives, we performed quantum dynamics simulations of the infrared spectral density of the h6-PAC and d6-PAC isotopomers that show up in the H/D isotopic frequency domain at two different temperatures viz. 77 and 298 K. A theoretical framework explaining the dynamical cooperative interactions within the hydrogen bonds (HBs) in the PAC crystals across a simulation of IR spectral density of the stretching band was developed. The model presupposes HBs from the nearby (COOH)2 cycles to have exceptionally strong dynamical cooperative contacts. The approach precisely hinges upon on a model that consider the dimer as centrosymmetric in which the low-frequency intermonomer mode (that is, O⋯O) stretches anharmonically and committing the O-H vibrational mode, associated with the high-frequency mode, to stretch harmonically. The approach considers also the following effects: Davydov coupling arising from the interference between the two HBs in the dimer; strong anharmonic coupling between the two stretching modes within the same HB; direct relaxation mechanism of the high stretches in the HB; and indirect relaxation mechanism that is devoted to the high stretches via the slow stretches. Using this approach, the principal characteristics of the O-H(D) experimental bands of the isotopomers studied herein with their peculiarities are simulated by selecting physically sound parameters that uniquely identify the onset of the specific features of the IR spectral densities. The impacts of the important parameters, characterizing the different leading mechanisms within this approach on the spectra, are revealed. The contrast of the emerging simulated spectra with the experimental ones reveals decent agreement for the studied isotopomers. By congregating the different mechanisms employed herein within the pioneering context of the linear response theory of Kubo, the obtained results strongly demonstrate and identify the main effects responsible for the generation of the experimental O-H and O-D bands. Through an examination of the effect of each mechanism involved within the h 6-PAC and d4-PAC isotopomers, it is possible to relate the emergence of IR spectral density to an interplay between the Davydov coupling and the relaxation dynamics.
Collapse
Affiliation(s)
- Najeh Rekik
- Physics Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia.
| |
Collapse
|
3
|
Verma NL, Kumar S, Kumar M, Pal J, Sharma D, Lalji RSK, Chahal M, Kant H, Rathor N, Javed S, Jaiswar G. Quantum chemical treatment, electronic energy in various solvents, spectroscopic, molecular docking and dynamic simulation studies of 2-amino-N-(2-chloro-6-methylphenyl)thiazole-5-carboxamide: A core of anticancer drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125263. [PMID: 39413608 DOI: 10.1016/j.saa.2024.125263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
The titled molecule 2-Amino-N-(2-chloro-6-methylphenyl)thiazole-5-carboxamide (ANMC) is a core of anticancer drug dasatinib (leukemia). Its derivatives exhibited bioactivity against breast cancer. Experimentally, the titled compound was described using NMR (1H NMR and 13C NMR), FTIR and UV-visible spectroscopy. The results were compared with the theoretical predictions, showing good agreement such as theoretical NH vibrations showed symmetric stretching and asymmetric stretching at 3429 and 3440 cm-1 respectively, λmax values appear at 305 nm for experimental and 307.75 nm for theoretical observations in acetone medium. Hirshfeld surface analysis well described the secondary internal and external interactions obtained like dnorm and di ranges -1.8551 to 1.4590 and 0.0918 to 2.6756 respectively. Comparing UV-visible spectra obtained in various solvents with the calculated TD-DFT results revealed minimal solvent effects. Molecular electrostatic potential (MEP) map and Fukui functions were employed, which indicated reactive sites of the molecule and the obtained order of nucleophilic reactivity was C16 > C2 > C8 > Cl1 > C22 > C21. The bioactivity profile probability of ANMC was theoretically explored by calculation of electrophilicity index and drug-likeness. Molecular docking of the ANMC molecule was performed with ten receptors to obtain the best ligand-protein interaction and the minimum binding energy obtained was -8.0 kcal/mol. Biomolecular stability of ANMC was investigated by Molecular Dynamic Simulation (MDS). And also the analysis of free energies showed strong interactions between the ligand and the protein.
Collapse
Affiliation(s)
- Nand Lal Verma
- Department of Chemistry, K. R. (PG) College, Mathura 281001, U.P, India
| | - Shilendra Kumar
- Department of Chemistry, R. B. S College, Agra 282002, U.P, India
| | - Mohit Kumar
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra 282002, U.P, India
| | - Jai Pal
- Department of Chemistry, R. B. S College, Agra 282002, U.P, India
| | - Deepa Sharma
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra 282002, U.P, India
| | - Ram Sunil Kumar Lalji
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Mohit Chahal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Hari Kant
- Department of Chemistry, R. B. S College, Agra 282002, U.P, India
| | - Nisha Rathor
- Department of Chemistry, K. R. (PG) College, Mathura 281001, U.P, India.
| | - Saleem Javed
- Department of Chemistry, Jamia Millia Islamia, New Delhi, Delhi 110025, India.
| | - Gautam Jaiswar
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra 282002, U.P, India.
| |
Collapse
|
4
|
Chaschin IS, Perepelkin EI, Sinolits MA, Badun GA, Chernysheva MG, Ivanova NM, Vasil Ev VG, Kizas OA, Anuchina NM, Khugaev GA, Britikov DV, Bakuleva NP. Coating based on chitosan/vancomycin nanoparticles: Patterns of formation in a water-carbon dioxide biphase system and in vivo stability. Int J Biol Macromol 2024; 278:134940. [PMID: 39173806 DOI: 10.1016/j.ijbiomac.2024.134940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
The patterns of formation of chitosan nanoparticles doped with vancomycin and coatings based on them in carbonate solutions have been investigated for the first time in this study. Using a technique of radioactive indicators, it was found that at a CO2 pressure of 30 MPa, the yield of the nanoparticles was ∼85 %, and a maximum antibiotic encapsulation efficiency of ∼30 % was achieved. By spectrophotometric and high-resolution microscopy, it was found that the coating of stabilized xenopericardial tissue of bioprosthetic heart valve, based on chitosan nanoparticles doped with vancomycin with a zeta potential |ζ| ∼20 mV completely covers collagen fibers by depositing about 60 nm nanoparticles onto them under direct deposition from carbonic acid at a pressure of 30 MPa CO2. The coating preserves the mechanical strength characteristics of collagen tissue and completely suppresses the growth of S. aureus pathogenic biofilm. This is consistent with the observed increase in antibiotic release of 15 % when the medium was acidified. Histological study demonstrated that the structure of pericardial tissues was not significantly altered by the deposition nanoparticles from carbonic acid. It was found that the rate of biodegradation of polymers and vancomycin in the coating differs by half (16 weeks for the rat model). A significantly lower degradation rate of antibiotics (∼50 % of vancomycin total remaining mass and ∼25 % of chitosan) was associated with its reliable encapsulation into nanoparticles.
Collapse
Affiliation(s)
- Ivan S Chaschin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation; Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation.
| | - Evgenii I Perepelkin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation
| | - Maria A Sinolits
- Lomonosov Moscow State University, Chemistry Department, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - Gennadii A Badun
- Lomonosov Moscow State University, Chemistry Department, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - Maria G Chernysheva
- Lomonosov Moscow State University, Chemistry Department, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation.
| | - Nina M Ivanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation.
| | - Victor G Vasil Ev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation.
| | - Olga A Kizas
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation.
| | - Nelya M Anuchina
- Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation
| | - Georgiy A Khugaev
- Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation
| | - Dmitrii V Britikov
- Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation.
| | - Natalia P Bakuleva
- Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation
| |
Collapse
|
5
|
Elangovan K, Ingle KE, Dhanasekaran R, Mahadevan M, Dhilip M. Synthesis, growth, optical, mechanical, thermal, dielectric, and SHG properties of Triethylaminium picrate (TEAP) single crystal for nonlinear optical applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123680. [PMID: 38043291 DOI: 10.1016/j.saa.2023.123680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Triethylaminium picrate (TEAP) crystals were grown using the slow evaporation solution growth method at ambient (35 °C) temperature. Salt was synthesized from Picric acid, and Triethylamine and methanol was used as solvents. The solution was mixed at a 1:1 ratio and evaporated slowly, produced yellow colour single crystal of TEAP with an average dimension of 19 × 8 × 5 mm3. The structure of the compound was determined by single-crystal X-ray diffraction (SCXRD) study, which confirms that the crystal is belongs to Orthorhombic crystal system, and its crystallinity was confirmed by the Bragg peak in the powder X-ray diffraction pattern. The superamolecular characteristic of the TEAP was confirmed by the Hirshfield analysis. CHN elemental analysis confirmed the stoichiometry and chemical composition of the synthesized complex salts. FT-IR and Polarized Raman spectral analyses confirmed the presence of different functional groups in the complex. UV-vis-NIR study identified the optical transmission window and the lower (TEAP) cut-off wavelength. Vickers' microhardness analysis determined the mechanical stability of the grown crystal. Studies of dielectric and AC conductivity were analyzed as a function of frequency. The thermogravimetry (TG) and differential thermal analysis (DTA) techniques were used to investigate the thermal behaviour of the material. The Kurtz-Perry powder technique was used to analyze the crystal's nonlinear optical properties (NLO) and found that its SHG efficiency was 1.5 times higher than that of potassium dihydrogen phosphate (KDP). The results from the obtained characterizations conclude that the TEAP crystal could be useful for NLO applications.
Collapse
Affiliation(s)
- K Elangovan
- Department of Physics, Malla Reddy Engineering College for Women (Autonomous), Maisammaguda, Dhulapally (Kompally), Secunderabad, Telangana 500 100, India.
| | - Kapil E Ingle
- Department of Physics, Malla Reddy Engineering College for Women (Autonomous), Maisammaguda, Dhulapally (Kompally), Secunderabad, Telangana 500 100, India
| | - R Dhanasekaran
- Department of Physics, Meenakshi Ammal Polytechnic College, Uthiramerur, Tamil Nadu 603 406, India
| | - M Mahadevan
- Department of Physics, Adhiparasakthi Engineering College, Melmaruvathur 603 319, Tamil Nadu, India
| | - M Dhilip
- Microwave Tube Research and Development Centre (MTRDC), Defence Research and Development Organization (DRDO), Ministry of Defence, Jalahalli, Bengaluru, Karnataka 560013, India
| |
Collapse
|
6
|
Medimagh M, Ben Mleh C, ISSAOUI N, Raja M, Kazachenko AS, Al-Dossary OM, Roisnel T, Kumar N, Marouani H. Bonding and noncovalent interactions effects in 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid: DFT calculation, topological analysis, NMR and molecular docking studies. Z PHYS CHEM 2024; 238:147-172. [DOI: 10.1515/zpch-2023-0354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Abstract
The pharmaceutical proprieties of the 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid compound have been studied and the relevant drug design has been considered. The investigated organic compound with formula (2,6-(CH3)C4H10N2)2(C2O4)2·H2C2O4 (2DPOA) has been synthesized by slow evaporation technique at room temperature of a molar ratio 3:2 mix of oxalic acid and 2,6-dimethylpiperazine. Then 2DPOA has been characterized by IR, 13C NMR, UV–visible and the DFT calculation at the B3LYP level of theory has been made. The molecular structure and parameters (bond angles and lengths) of the molecule have been optimized using the Gaussian 09 software and compared with the XRD data. The atoms-in-molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL) methods have been utilized to determine the types and nature of noncovalent interactions present within the 2DPOA molecule. These methods offer insights into the characteristics and behavior of these interactions. Furthermore, the presence of these interactions has been confirmed through the Hirshfeld Surface (HS) and reduced density gradient (RDG) analysis. The NBO analysis is employed to assess the charge exchange occurring within the studied compound. The molecular reactive sites have been examined using the molecular potential surface and Mulliken atomic charges. The energy gap between HOMO–LUMO and chemical properties of 2DPOA have been determined within the frontier molecular orbital theory. The UV–Vis spectrum of the 2DPOA molecule has been recorded and examined. The calculated and experimental infrared absorption and nuclear magnetic resonance spectra of 2DPOA molecule have been investigated. Finally, the molecular docking simulation has been used to find novel inhibitors and drugs for the cancer and epilepsy disease treatment.
Collapse
Affiliation(s)
- Mouna Medimagh
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences , University of Monastir , Monastir 5079 , Tunisia
| | - Cherifa Ben Mleh
- Laboratory of Chemistry of Materials (LR13ES08), Faculty of Sciences of Bizerte , University of Carthage , Bizerte , 7021 , Tunisia
| | - Noureddine ISSAOUI
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences , University of Monastir , Monastir 5079 , Tunisia
| | - Murugesan Raja
- Department of Physics , Government Thirumagal Mills College , Gudiyatham , Vellore 632602 , India
| | - Aleksandr S. Kazachenko
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS” , Akademgorodok, 50/24 , Krasnoyarsk , 660036 , Russia
- Siberian Federal University , Svobodny Av., 79 , Krasnoyarsk , 660041 , Russia
| | - Omar M. Al-Dossary
- Department of Physics and Astronomy , College of Science, King Saud University , PO Box 2455 , Riyadh 11451 , Saudi Arabia
| | - Thierry Roisnel
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Univ. Rennes , F-35000 Rennes , France
| | - Naveen Kumar
- Department of Chemistry , Maharshi Dayanand University , Rohtak , India
| | - Houda Marouani
- Laboratory of Chemistry of Materials (LR13ES08), Faculty of Sciences of Bizerte , University of Carthage , Bizerte , 7021 , Tunisia
| |
Collapse
|
7
|
Raza MA, Farwa U, Danish M, Ozturk S, Aagar AA, Dege N, Rehman SU, Al-Sehemi AG. Computational modeling of imines based anti-oxidant and anti-esterases compounds: Synthesis, single crystal and In-vitro assessment. Comput Biol Chem 2023; 104:107880. [PMID: 37196604 DOI: 10.1016/j.compbiolchem.2023.107880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Molecular modeling strategy was adopted to check the biological potential of the imine based molecules against free radical, acetylcholine esterase and butyrylcholine esterase. Three Schiff based compounds as (E)-2-(((4-bromophenyl)imino)methyl)-4-methylphenol (1), (E)-2-(((3-fluorophenyl)imino)methyl)-4-methylphenol (2) and (2E,2E)-2-(2-(2-hydroxy-5-methylbenzylidene)hydrazono)-1,2-diphenylethanone (3) were synthesized with high yield. The synthesized compounds were characterized with the help of modern techniques such as UV, FTIR and NMR while exact structure was depicted with Single Crystal X-Ray diffraction technique which disclosed that compound 1 is orthorhombic, while 2 and 3 are monoclinic. A hybrid functional (B3LYP) method with general basis set of 6-31 G(d,p) were applied to optimize synthesized Schiff bases. The contribution of in-between molecular contacts within a crystalline assembly of compounds were studied using Hirshfeld surface analysis (HS). In order to check the ability of the synthesized compounds toward free radical and enzyme inhibition, in vitro models were used to assess the radical scavenging and enzyme inhibition potential which depicted that compound 3 showed highest potential (57.43 ± 1.0%; DPPH, 75.09 ± 1.0%; AChE and 64.47 ± 1.0%; BChE). The ADMET assessments suggested the drug like properties of the synthesized compounds. It was concluded from results (in vitro and in silico) that synthesized compound have ability to cure the disorder related to free radical and enzyme inhibition. Compound 3 was shown to be the most active compared to other compounds.
Collapse
Affiliation(s)
- Muhammad Asam Raza
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan.
| | - Umme Farwa
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Danish
- Department of Chemistry, University of Sialkot, Sialkot 51310, Pakistan
| | - Seyhan Ozturk
- Department of Chemistry, Ondokuz Mayis University, Faculty of Arts and Sciences, Samsun, Turkey
| | - Aysen Alaman Aagar
- Department of Chemistry, Ondokuz Mayis University, Faculty of Arts and Sciences, Samsun, Turkey
| | - Necmi Dege
- Department of Physics, Ondokuz Mayis University, Faculty of Arts and Sciences, Samsun, Turkey
| | - Shafiq Ur Rehman
- Department of Chemistry, University of Central Punjab, Lahore, Pakistan
| | | |
Collapse
|
8
|
Mazurek AH, Szeleszczuk Ł, Bethanis K, Christoforides E, Dudek MK, Zielińska-Pisklak M, Pisklak DM. 17-β-Estradiol-β-Cyclodextrin Complex as Solid: Synthesis, Structural and Physicochemical Characterization. Molecules 2023; 28:molecules28093747. [PMID: 37175157 PMCID: PMC10180119 DOI: 10.3390/molecules28093747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
17-β-estradiol (EST) is the most potent form of naturally occurring estrogens; therefore, it has found a wide pharmaceutical application. The major problem associated with the use of EST is its very low water solubility, resulting in poor oral bioavailability. To overcome this drawback, a complexation with cyclodextrins (CD) has been suggested as a solution. In this work, the host-guest inclusion complex between the ß-CD and EST has been prepared using four different methods. The obtained samples have been deeply characterized using 13C CP MAS solid state NMR, PXRD, FT-IR, TGA, DSC, and SEM. Using SCXRD, the crystal structure of the complex has been determined, being to the best of our knowledge the first solved crystal structure of an estrogen/CD complex. The periodic DFT calculations of NMR properties using GIPAW were found to be particularly helpful in the analysis of disorder in the solid state and interpretation of experimental NMR results. This work highlights the importance of a combined ssNMR/SCXRD approach to studying the structure of the inclusion complexes formed by cyclodextrins.
Collapse
Affiliation(s)
- Anna Helena Mazurek
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Żwirki i Wigury 81 Str., 02-093 Warsaw, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Kostas Bethanis
- Laboratory of Physics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Elias Christoforides
- Laboratory of Physics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Marta Katarzyna Dudek
- Structural Studies Department, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 Str., 90-363 Łódź, Poland
| | - Monika Zielińska-Pisklak
- Department of Pharmaceutical and Biomaterials Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Dariusz Maciej Pisklak
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| |
Collapse
|
9
|
Malar Wezhli M, Balamurugan P, Raju K, Sevvanthi S, Irfan A, Javed S, Muthu S. Quantum computational, spectroscopic, topological investigations and molecular docking studies on piperazine derivatives: A comparative study on Ethyl, Benzene and Furan sulfonyl Piperazine. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Miotke-Wasilczyk M, Kwela J, Lewkowicz A, Józefowicz M. Insight into the release mechanisms of diflunisal and salicylic acid from poly(vinyl alcohol). The role of hydrogen bonding interactions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121802. [PMID: 36070674 DOI: 10.1016/j.saa.2022.121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/04/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Diflunisal (5-(2,4-Difluorophenyl)salicylic acid, DIF), salicylic acid (SAL) derivative, which, on the one hand, is active pharmaceutical ingredient, on the other hand, belongs to the compounds exhibiting excited-state intramolecular proton transfer (ESIPT) behaviour was used to study the drug interactions with poly(vinyl alcohol) (PVA) matrix. For clarifying the nature and mechanisms of the drug-matrix interactions the salicylic acid (SAL) molecule was selected as the model active ESIPT compound, whose physicochemical properties in different media are well understood. The solute-solvent interactions (non-specific (dipole-dipole) versus specific (hydrogen bonding)) of DIF and SAL with different neat solvents were investigated using the steady-state spectroscopic technique. The solvent effect on spectral behaviours of DIF and SAL was analyzed based on the parametric solvent scales. In order to identify functional groups in the PVA matrices, determine the structure present in the studied molecule-PVA system and thus obtain information about the potential interactions between PVA and the studied molecules, the Raman spectra of pure PVA, SAL-PVA and DIF-PVA systems were measured. It has been shown that the molecular structure of the active substance entrapped in the polymer matrix affects the structure of the polymer, i.e., isotactic (SAL-PVA) versus syndiotactic (DIF-PVA) structure. The analysis of drug release kinetics revealed that the DIF is more strongly bound to PVA in comparison to SAL, which confirms conclusions drawn from the analysis of the Raman spectra i.e., the isotactic structure of SAL-PVA material results in a faster initial release process of weakly bound, located on the surface of the polymer SAL molecules.
Collapse
Affiliation(s)
- Marta Miotke-Wasilczyk
- Insitute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland.
| | - Jerzy Kwela
- Insitute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| | - Aneta Lewkowicz
- Insitute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| | - Marek Józefowicz
- Insitute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland.
| |
Collapse
|
11
|
Theoretical Study on Spectrum and Luminescence Mechanism of Indocyanine Green Dye Based on Density Functional Theory (DFT). J CHEM-NY 2022. [DOI: 10.1155/2022/4321595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Indocyanine green is a great near-infrared fluorescence with good luminescent properties and important medical applications. In this paper, the theoretical spectrum and orbital model of its molecular level are established. The two most probable conformations were studied, and their energies, vibrational spectra, UV-Vis absorption spectra, frontier molecular orbitals (HOMO and LUMO), and energy gaps were obtained by density functional theory (DFT) calculations, respectively. This provides a theoretical and design basis for the development of novel dyes similar to indocyanine green dyes and a reference case for improved application methods and synthetic predesign of novel fluorescent dyes.
Collapse
|
12
|
Manhas FM, Fatima A, Verma I, Siddiqui N, Muthu S, AlSalem HS, Savita S, Singh M, Javed S. Quantum computational, spectroscopic (FT-IR, NMR and UV–Vis) profiling, Hirshfeld surface, molecular docking and dynamics simulation studies on pyridine-2,6-dicarbonyl dichloride. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Ganesan TS, Elangovan N, Vanmathi V, Sowrirajan S, Chandrasekar S, Murthy KS, Thomas R. Spectroscopic, Computational(DFT), Quantum mechanical studies and protein-ligand interaction of Schiff base 6,6-((1,2-phenylenebis(azaneylylidene))bis(methaneylylidene))bis(2-methoxyphenol) from o-phenylenediamine and 3- methoxysalicylaldehyde. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Latha A, Elangovan N, Manoj K, Maheswari V, Balachandran V, Balasubramani K, Sowrirajan S, Chandrasekar S, Thomas R. Synthesis, single crystal (XRD), spectral characterization, computational (DFT), quantum chemical modelling and anticancer activity of di(p-bromobenzyl) (dibromo) (1, 10-phenanthroline) tin (IV) complex. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Osigbemhe IG, Oyoita EE, Louis H, Khan EM, Etim EE, Edet HO, Ikenyirimba OJ, Oviawe AP, Obuye F. Antibacterial potential of N-(2-furylmethylidene)-1, 3, 4-thiadiazole-2-amine: Experimental and theoretical investigations. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Synthesis, crystal structure, characterization, Hirshfeld analysis, molecular docking and DFT calculations of 5-Phenylamino-isophthalic acid: A good NLO material. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Sharma A, Khanum G, Kumar A, Fatima A, Singh M, Abualnaja KM, Althubeiti K, Muthu S, Siddiqui N, Javed S. Conformational stability, quantum computational, spectroscopic, molecular docking and molecular dynamic simulation study of 2-hydroxy-1-naphthaldehyde. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Quantum chemical, spectroscopic, hirshfeld surface and molecular docking studies on 2-aminobenzothiazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Singh N, Fatima A, Singh M, kumar M, Verma I, Muthu S, Siddiqui N, Javed S. Exploration of experimental, theoretical, Hirshfeld surface, molecular docking and electronic excitation studies of Menadione: A potent anti-cancer agent. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Jabarov SH, Ibrahimova SI, Hajiyeva FV, Huseynov EM, Aliyev YI. Structural, Vibrational, and Dielectric Properties of CuInZnSe3 Chalcogenide Compound. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Crystal Structure, Topology, DFT and Hirshfeld Surface Analysis of a Novel Charge Transfer Complex (L3) of Anthraquinone and 4-{[(Anthracen-9-yl)methyl] Amino}Benzoic Acid (L2) Exhibiting Photocatalytic Properties: An Experimental and Theoretical Approach. Molecules 2022; 27:molecules27051724. [PMID: 35268825 PMCID: PMC8912118 DOI: 10.3390/molecules27051724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/18/2023] Open
Abstract
Here, we report a facile route to the synthesizing of a new donor–acceptor complex, L3, using 4-{[(anthracen-9-yl)meth-yl] amino}-benzoic acid, L2, as donor moiety with anthraquinone as an acceptor moiety. The formation of donor–acceptor complex L3 was facilitated via H-bonding and characterized by single-crystal X-ray diffraction. The X-ray diffraction results confirmed the synthesized donor–acceptor complex L3 crystal belongs to the triclinic system possessing the P-1 space group. The complex L3 was also characterized by other spectral techniques, viz., FTIR and UV absorption spectroscopy, which confirmed the formation of new bonds between donor L2 moiety and acceptor anthraquinone molecule. The crystallinity and thermal stability of the newly synthesized complex L3 was confirmed by powdered XRD and TGA analysis and theoretical studies; Hirshfeld surface analysis was performed to define the type of interactions occurring in the complex L3. Interestingly, theoretical results were successfully corroborated with experimental results of FTIR and UV absorption. The density functional theory (DFT) calculations were employed for HOMO to LUMO; the energy gap (∆E) was calculated to be 3.6463 eV. The complex L3 was employed as a photocatalyst for the degradation of MB dye and was found to be quite efficient. The results showed MB dye degraded about 90% in 200 min and followed the pseudo-first-order kinetic with rate constant k = 0.0111 min−1 and R2 = 0.9596. Additionally, molecular docking reveals that the lowest binding energy was −10.8 Kcal/mol which indicates that the L3 complex may be further studied for its biological applications.
Collapse
|
22
|
Sumrra SH, Mushtaq F, Ahmad F, Hussain R, Zafar W, Imran M, Zafar MN. Coordination behavior, structural, statistical and theoretical investigation of biologically active metal-based isatin compounds. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02123-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Fatima A, Khanum G, Sharma A, Garima K, Savita S, Verma I, Siddiqui N, Javed S. Computational, spectroscopic, Hirshfeld surface, electronic state and molecular docking studies on phthalic anhydride. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131571] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Khanum G, Fatima A, Siddiqui N, Agarwal D, Butcher R, Srivastava SK, Javed S. Synthesis, single crystal, characterization and computational study of 2-amino-N-cyclopropyl-5-ethyl-thiophene-3-carboxamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Agarwal N, Verma I, Siddiqui N, Javed S. Experimental spectroscopic and quantum computational analysis of pyridine-2,6-dicarboxalic acid with molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Probing solvent effect and strong and weak interactions in 2-Nitrophenyl-hydrazine using independent gradient model and Hirshfeld from wave function calculation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Structural (monomer and dimer), wavefunctional, NCI analysis in aqueous phase, electronic and excited state properties in different solvent atmosphere of 3-{(E)-[(3,4-dichlorophenyl)imino]methyl} benzene-1,2-diol. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Rekik N, Salman S, Suleiman J, Farooq U, Flakus HT. IR spectral density of the υS(Cl–H→) band in gaseous (CH3)2O…HCl complex: Phase decoherence due to the anharmonic coupling theory and the bending mode effects. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Rekik N, Salman S, Farooq U, Nakajima T, Wojcik MJ, Blaise P. Towards accurate infrared spectral density of weak H-bonds in absence of relaxation mechanisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:197-208. [PMID: 30240981 DOI: 10.1016/j.saa.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/04/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Following the previous theoretical developments to completely reproduce the IR spectra of weak hydrogen bond complexes within the framework of the linear response theory (LRT), the quantum theory of the high stretching mode spectral density (SD) of weak H-bonds is reconsidered. Within the LRT theory, the SD is the one sided Fourier transform of the autocorrelation function (ACF) of the high stretching mode dipole moment operator. In order to provide more accurate theoretical bandshapes, we have explored the equivalence between the SDs given in previous studies with respect to a new quantum one, and revealed that in place of the basic equations used in the precedent works for which the SD IOld(ω)=2Re∫0∞GOld(t)e-iωtdt where the ACF GOld(t) = ⟨μ(0)μ(t)+⟩ = tr {ρ {μ(0)} {μ(t)}+}, one can use a new expression for the SD, given by INew(ω)=2ωRe∫0∞GNew(t)e-iωtdt where GNew(t)=μ(0)μ(t)+=1βtrρB∫0βμ(0)μ(t+iλℏ)+dλ. Here ρB is the Boltzmann density operator, μ(0) the dipole moment operator at initial time and μ(t) the dipole moment operator at time t in the Heisenberg picture, ℏ is the Planck constant, β is the inverse of the Boltzmann factor kBT where T is the absolute temperature and kB the Boltzmann constant. Using this formalism, we demonstrated that the new quantum approach gives the same final SD as used by previous models, and reduces to the Franck-Condon progression appearing in the Maréchal and Witkowski's pioneering approach when the relaxation mechanisms are ignored. Results of this approach shed light on the equivalence between the quantum and classical IR SD approaches for weak H-bonds in absence of medium surroundings effect, which has been a subject of debate for decades.
Collapse
Affiliation(s)
- Najeh Rekik
- Physics Department, Faculty of Science, University of Ha'il, Saudi Arabia; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Saed Salman
- Physics Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Umer Farooq
- Physics Department, Faculty of Science, University of Ha'il, Saudi Arabia
| | - Takahito Nakajima
- RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Marek J Wojcik
- Laboratory of Molecular Spectroscopy, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow 30-387, Poland
| | - Paul Blaise
- Laboratoire de Mathématiques et Physique (LAMPS), Université de Perpignan Via Domitia (UPVD), 52 Av. Paul Alduy, Perpignan Cedex 66860, France
| |
Collapse
|
30
|
Rekik N, Suleiman J, Blaise P, Wojcik MJ. Equivalence between the Classical and Quantum IR Spectral Density Approaches of Weak H-Bonds in the Absence of Damping. J Phys Chem A 2018; 122:2108-2115. [PMID: 29436830 DOI: 10.1021/acs.jpca.8b00269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this paper is to overhaul the quantum elucidation of the spectral density (SD) of weak H-bonds treated without taking into account any of the damping mechanisms. The reconsideration of the SD is performed within the framework the linear response theory. Working in the setting of the strong anharmonic coupling theory and the adiabatic approximation, the simplified expression of the classical SD, in the absence of dampings, is equated to be ICl(ω) = Re[∫0∞GCl(t)e-iΩt dt] in which the classical-like autocorrelation function (ACF), GCl(t), is given by GCl(t) = tr{ρ(β){μ(0)}{μ(t)}†}. With this consideration, we have shown that the classical SD is equivalent to the line shape obtained by F(ω) = ΩICl(ω), which in turn is equivalent to the quantum SD given by IQu(ω) = Re[∫0∞GQu(t)e-iΩt dt], where GQu(t) is the corresponding quantum ACF having for expression GQu(t) = (1/β) tr{ρ∫0β[μ(0)}{μ(t + iλℏ)}† dλ}. Thus, we have shown that for weak H-bonds dealt without dampings, the SDs obtained by the quantum approaches are equivalent to the SDs geted by the classical approach in which the incepation ACF is, however, of quantum nature and where the line shape is the Fourier transform of the ACF times the angular frequency. It is further shown that the classical approach dealing with the SD of weak H-bonds leads identically to the result found by Maréchal and Witkowski in their pioneering quantum treatment where they ignored the linear response theory and dampings.
Collapse
Affiliation(s)
- Najeh Rekik
- Physics Department, Faculty of Science, University of Ha'il , Kingdom of Saudi Arabia.,Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Jamal Suleiman
- Physics Department, College of Science, King Faisal University , Al Ahsa 31982, Kingdom of Saudi Arabia
| | - Paul Blaise
- Laboratoire de Mathématiques et Physique (LAMPS), Université de Perpignan Via Domitia (UPVD) , 52 Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Marek J Wojcik
- Laboratory of Molecular Spectroscopy, Faculty of Chemistry, Jagiellonian University , Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
31
|
Rekik N, Alshammari MF. Electrical anharmonicity and dampings contributions to Cl- H→ stretching band in gaseous (CH 3 ) 2 O…HCl complex: Quantum dynamic study and prediction of the temperature effects. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Rekik N. Signature of Congregated Effects of Mechanical and Electrical Anharmonicities, Fermi Resonances, and Dampings on the IR Spectra of Hydrogen Bonded Systems: Quantum Dynamic Study. J Phys Chem A 2017; 121:3555-3566. [DOI: 10.1021/acs.jpca.7b01616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Najeh Rekik
- Physics
Department, Faculty of Science, University of Ha’il, Ha’il, 81451, Kingdom of Saudi Arabia
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
33
|
Rekik N, Wójcik MJ. On the influence of electrical anharmonicity on infrared bandshape of hydrogen bond. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2010.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Rekik N, Oujia B, Wójcik MJ. Theoretical infrared spectral density of H-bonds in liquid and gas phases: Anharmonicities and dampings effects. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Rekik N, Issaoui N, Oujia B, Wójcik MJ. Theoretical IR spectral density of H-bond in liquid phase: Combined effects of anharmonicities, Fermi resonances, direct and indirect relaxations. J Mol Liq 2008; 141:104-109. [DOI: 10.1016/j.molliq.2007.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Ghalla H, Rekik N, Baazaoui M, Oujia B, Wójcik MJ. IR spectral density of H-bonds. Both intrinsic anharmonicity of the fast mode and the H-bond bridge. Part II: Isotopic effect. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.theochem.2008.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|