1
|
Kancharla SK, Birudaraju S, Pal A, Krishnakanth Reddy L, Reddy ER, Vagolu SK, Sriram D, Bonige KB, Korupolu RB. Synthesis and biological evaluation of isatin oxime ether-tethered aryl 1 H-1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis. NEW J CHEM 2022. [DOI: 10.1039/d1nj05171g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of isatin oxime ether-tethered aryl 1H-1,2,3-triazole hybrids were synthesized and screened for their in vitro antitubercular activity against the M. tuberculosis H37Rv strain.
Collapse
Affiliation(s)
- Sampath Kumar Kancharla
- Aragen Life Sciences (Formerly GVK Bioscience), Nacharam, Hyderabad, Telangana State-500076, India
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh-530003, India
| | - Saritha Birudaraju
- Aragen Life Sciences (Formerly GVK Bioscience), Nacharam, Hyderabad, Telangana State-500076, India
| | - Arani Pal
- Aragen Life Sciences (Formerly GVK Bioscience), Nacharam, Hyderabad, Telangana State-500076, India
| | - L. Krishnakanth Reddy
- Aragen Life Sciences (Formerly GVK Bioscience), Nacharam, Hyderabad, Telangana State-500076, India
| | - Eda Rami Reddy
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Siva Krishna Vagolu
- Medicinal Chemistry & Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana State-500078, India
| | - Dharmarajan Sriram
- Medicinal Chemistry & Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana State-500078, India
| | - Kishore Babu Bonige
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh-530003, India
| | - Raghu Babu Korupolu
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh-530003, India
| |
Collapse
|
2
|
de Paula RL, de Almeida JSFD, Cavalcante SFA, Gonçalves AS, Simas ABC, Franca TCC, Valis M, Kuca K, Nepovimova E, Granjeiro JM. Molecular Modeling and In Vitro Studies of a Neutral Oxime as a Potential Reactivator for Acetylcholinesterase Inhibited by Paraoxon. Molecules 2018; 23:E2954. [PMID: 30424582 PMCID: PMC6278417 DOI: 10.3390/molecules23112954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022] Open
Abstract
The present work aimed to compare the small, neutral and monoaromatic oxime, isatin-3-oxime (isatin-O), to the commercial ones, pralidoxime (2-PAM) and obidoxime, in a search for a new potential reactivator for acetylcholinesterase (AChE) inhibited by the pesticide paraoxon (AChE/POX) as well as a novel potential scaffold for further synthetic modifications. The multicriteria decision methods (MCDM) allowed the identification of the best docking poses of those molecules inside AChE/POX for further molecular dynamic (MD) studies, while Ellman's modified method enabled in vitro inhibition and reactivation assays. In corroboration with the theoretical studies, our experimental results showed that isatin-O have a reactivation potential capable of overcoming 2-PAM at the initial moments of the assay. Despite not achieving better results than obidoxime, this molecule is promising for being an active neutral oxime with capacity of crossing the blood⁻brain barrier (BBB), to reactivate AChE/POX inside the central and peripheral nervous systems. Moreover, the fact that isatin-O can also act as anticonvulsant makes this molecule a possible multipotent reactivator. Besides, the MCDM method showed to be an accurate method for the selection of the best docking poses generated in the docking studies.
Collapse
Affiliation(s)
- Reuel L de Paula
- National Institute of Metrology, Quality and Technology (INMETRO), Avenida Nossa Senhora das Graças 50, Duque de Caxias 25250-020, Brazil.
- IDQBRN (Brazilian Army CBRN Defense Institute), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil.
| | - Joyce S F D de Almeida
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil.
| | - Samir F A Cavalcante
- IDQBRN (Brazilian Army CBRN Defense Institute), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil.
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro (UFRJ), CCS Bloco H Cidade Universitária, Rio de Janeiro 21941-902, Brazil.
| | - Arlan S Gonçalves
- Federal Institute of Education, Science and Technology, Avenida Ministro Salgado Filho S/N, Vila Velha 29106-010, Brazil.
| | - Alessandro B C Simas
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro (UFRJ), CCS Bloco H Cidade Universitária, Rio de Janeiro 21941-902, Brazil.
| | - Tanos C C Franca
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil.
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic.
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Simkova 870, 50003 Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (INMETRO), Avenida Nossa Senhora das Graças 50, Duque de Caxias 25250-020, Brazil.
| |
Collapse
|
3
|
Design and synthesis of new thiobarbituric acid metal complexes as potent protease inhibitors: spectral characterization, thermal analysis and DFT calculations. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1229-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Nassar MY, Abdelrahman EA. Hydrothermal tuning of the morphology and crystallite size of zeolite nanostructures for simultaneous adsorption and photocatalytic degradation of methylene blue dye. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Nassar MY, Ali AA, Amin AS. A facile Pechini sol–gel synthesis of TiO2/Zn2TiO2/ZnO/C nanocomposite: an efficient catalyst for the photocatalytic degradation of Orange G textile dye. RSC Adv 2017. [DOI: 10.1039/c7ra04899h] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have developed an efficient route for the synthesis of TiO2/Zn2TiO2/ZnO/C nanocomposites through a Pechini sol–gel method followed by heat treatment at 550 °C for 30 min.
Collapse
Affiliation(s)
- Mostafa Y. Nassar
- Chemistry Department
- Faculty of Science
- Benha University
- Benha 13518
- Egypt
| | - Ayman A. Ali
- Chemistry Department
- Faculty of Science
- Benha University
- Benha 13518
- Egypt
| | - Alaa S. Amin
- Chemistry Department
- Faculty of Science
- Benha University
- Benha 13518
- Egypt
| |
Collapse
|
6
|
Shakir M, Hanif S, Sherwani MA, Mohammad O, Azam M, Al-Resayes SI. Pharmacophore hybrid approach of new modulated bis-diimine Cu(II)/Zn(II) complexes based on 5-chloro Isatin Schiff base derivatives: Synthesis, spectral studies and comparative biological assessment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 157:39-56. [PMID: 26882291 DOI: 10.1016/j.jphotobiol.2016.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023]
Abstract
Novel bioactive 5-chloro isatin based Schiff base ligands, (N,N'E,N,N'Z)-N,N'-(5-chloroindoline-2,3-diylidene)bis(5-nitrobenzo [d]thiazol-2-amine), L(1) and (N,N'E,N,N'Z)-N,N'-(5-chloroindoline-2,3-diylidene)bis(5-nitrothiazol-2-amine), L(2) derived from 2-amino 5-nitrobenzothiazole and 2-amino 5-nitrothiazole and their metal complexes, [Cu(L(1))2]Cl2;1, [Zn(L(1))2(H2O)2]Cl2;2, [Cu(L(2))2]Cl2;3 and [Zn(L(2))2(H2O)2]Cl2;4 have been synthesized. The composition, stoichiometry and geometry of the proposed ligands and their complexes have been envisaged by the results of elemental analyses and spectroscopic data (FT-IR, (1)H NMR and (13)C NMR, Mass and EPR). The molar conductivity values of the metal complexes revealed their ionic nature. The thermal stability of metal complexes was demonstrated by TGA/DTA studies while the crystalline nature of the complexes has been ascertained by XRD. Furthermore, a comparative account of in vitro antibacterial study against different bacterial strains with respect to standard antibiotic and scavenging activity against standard control at different concenterations unfolded pronounced antibacterial and radical scavenging potencies of the metal complexes as compared to free ligands. In addition, in vitro cytotoxicity of ligands and its metal complexes was also screened on MCF7 (Human breast adenocarcinoma), HeLa (Human cervical carcinoma) and HepG2 (Human Hepatocellular carcinoma), cell lines and normal cells (PBMC). The antiproliferative outcomes revealed that metal complexes exhibit superior activity in general as compared to free ligands (L(1) and L(2)) where metal complexes (1 and 2) of 5-chloro isatin linked benzothiazole motif (L(1)) are found to have better prospect of acting as chemotherapeutic agents which can be explained in terms of greater biopotency, planarity and conjugation against all the tested cancer cell lines with IC50<2.80 μM.
Collapse
Affiliation(s)
- Mohammad Shakir
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Summaiya Hanif
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Asif Sherwani
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Owais Mohammad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Azam
- Department of Chemistry, Science College, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud I Al-Resayes
- Department of Chemistry, Science College, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Sayin K, Karakaş D. Structural, spectral, NLO and MEP analysis of the [MgO₂Ti₂(OPr(i)ⁱⁱ)₆], [MgO₂Ti₂(OPr(i)ⁱ)₂(acac)₄] and [MgO₂Ti₂(OPr(i)ⁱ)2(bzac)₄] by DFT method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 144:176-182. [PMID: 25754394 DOI: 10.1016/j.saa.2015.02.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
Quantum chemical calculations are performed on [MgO2Ti2(OPr(i))6] and [MgO2Ti2(OPr(i))2(L)4] complexes. L is acetylacetonate (acac) and benzoylacetonate (bzac) anion. The crystal structures of these complexes have not been obtained as experimentally but optimized structures of these complexes are obtained as theoretically in this study. Universal force field (UFF) and DFT/B3LYP method are used to obtain optimized structures. Theoretical spectral analysis (IR, (1)H and (13)C NMR) is compared with their experimental values. A good agreement is found between experimental and theoretical spectral analysis. These results mean that the optimized structures of mentioned complexes are appropriate. Additionally, the active sites of mentioned complexes are determined by molecular electrostatic potential (MEP) diagrams and non-linear optical (NLO) properties are investigated.
Collapse
Affiliation(s)
- Koray Sayin
- Department of Chemistry, Institute of Science, Cumhuriyet University, 58140 Sivas, Turkey.
| | - Duran Karakaş
- Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|
8
|
Attia AS, Abdel Aziz AA, Alfallous KA, El-Shahat M. New diethoxo-bridged dinuclear Cr(III) complexes with derivatives of the quinoxaline-2,3-dione ligand and 2,2′-bipyridine as a co-ligand: Syntheses, spectral characterizations, magnetic properties, antimicrobial inhibitory activities and interpretation of the electronic absorption spectra using the ZINDO/S-CI semi-empirical method. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|