1
|
Beć KB, Grabska J, Hawranek JP, Huck CW. Carbonyl stretching band in amides as Lorentz oscillator. Insights into anharmonicity and local environment in the liquid phase from NIR and MIR spectra of N-methylformamide and di-N,N-methylformamide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124954. [PMID: 39180970 DOI: 10.1016/j.saa.2024.124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
We investigated the anharmonicity and intermolecular interactions of N-methylformamide (NMF) and di-N,N-methylformamide (DMF) in the neat liquid phase with particular interest in the amide bands. The vibrational spectra, complex refractive index, and complex electric permittivity were determined in in the mid- (MIR) and near-infrared (NIR) regions (11,500-560 cm-1; 870-17857 nm). Dispersion analysis was based on the Classical Damped Harmonic Oscillator (CDHO) and simultaneous modelling of the real and imaginary components of the spectra. This data delivered insights into the vibrational energy dissipation and self-association in liquid amides. Identification of the MIR and NIR bands was based on anharmonic GVPT2//B3LYP/6-311++G(d,p) calculations. DMF and NMF follow distinct self-association, evidenced in the MIR fingerprint by the two components of the νCO, the analog of the Amide I band. These conclusions are supported by the structural information derived from the NIR spectra. Furthermore, the contribution of overtones and combination bands in the MIR spectra of amides was examined. The conclusions on molecular interactions and structural dynamics of NMF and DMF contribute to a deeper understanding of the effects of changes in the local environment of the amide group.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria.
| | | | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Ozaki Y, Beć KB, Morisawa Y, Yamamoto S, Tanabe I, Huck CW, Hofer TS. Advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Chem Soc Rev 2021; 50:10917-10954. [PMID: 34382961 DOI: 10.1039/d0cs01602k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this review is to demonstrate advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Molecular spectroscopy, particularly vibrational spectroscopy and electronic spectroscopy, has been used extensively for a wide range of areas of chemical sciences and materials science as well as nano- and biosciences because it provides valuable information about structure, functions, and reactions of molecules. In the meantime, quantum chemical approaches play crucial roles in the spectral analysis. They also yield important knowledge about molecular and electronic structures as well as electronic transitions. The combination of spectroscopic approaches and quantum chemical calculations is a powerful tool for science, in general. Thus, our article, which treats various spectroscopy and quantum chemical approaches, should have strong implications in the wider scientific community. This review covers a wide area of molecular spectroscopy from far-ultraviolet (FUV, 120-200 nm) to far-infrared (FIR, 400-10 cm-1)/terahertz and Raman spectroscopy. As quantum chemical approaches, we introduce several anharmonic approaches such as vibrational self-consistent field (VSCF) and the combination of periodic harmonic calculations with anharmonic corrections based on finite models, grid-based techniques like the Numerov approach, the Cartesian coordinate tensor transfer (CCT) method, Symmetry-Adapted Cluster Configuration-Interaction (SAC-CI), and the ZINDO (Semi-empirical calculations at Zerner's Intermediate Neglect of Differential Overlap). One can use anharmonic approaches and grid-based approaches for both infrared (IR) and near-infrared (NIR) spectroscopy, while CCT methods are employed for Raman, Raman optical activity (ROA), FIR/terahertz and low-frequency Raman spectroscopy. Therefore, this review overviews cross relations between molecular spectroscopy and quantum chemical approaches, and provides various kinds of close-reality advanced spectral simulation for condensed phases.
Collapse
Affiliation(s)
- Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan. and Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Yusuke Morisawa
- Department of Chemistry, School of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shigeki Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ichiro Tanabe
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas S Hofer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A6020 Innsbruck, Austria
| |
Collapse
|
3
|
Beć KB, Grabska J, Ozaki Y, Hawranek JP, Huck CW. Influence of Non-fundamental Modes on Mid-infrared Spectra: Anharmonic DFT Study of Aliphatic Ethers. J Phys Chem A 2017; 121:1412-1424. [DOI: 10.1021/acs.jpca.6b11734] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Krzysztof B. Beć
- Institute of Analytical
Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck, Austria
- School
of Science
and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Justyna Grabska
- Institute of Analytical
Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck, Austria
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Yukihiro Ozaki
- School
of Science
and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Jerzy P. Hawranek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Christian W. Huck
- Institute of Analytical
Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|