1
|
Bi X, Ma B, Liu W, Gao WQ, Ye J, Rao H. Transcriptome-aligned metabolic profiling by SERSome reflects biological changes following mesenchymal stem cells expansion. Stem Cell Res Ther 2024; 15:467. [PMID: 39696645 DOI: 10.1186/s13287-024-04109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are widely applied in the treatment of various clinical diseases and in the field of medical aesthetics. However, MSCs exhibit greater heterogeneity limited stability, and more complex molecular and mechanistic characteristics compared to conventional drugs, making rapid and precise monitoring more challenging. METHODS Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive, tractable and low-cost fingerprinting technique capable of identifying a wide range of molecules related to biological processes. Here, we employed SERS for reproducible quantification of ultralow concentrations of molecules and utilized spectral sets, termed SERSomes, for robust and comprehensive intracellular multi-metabolite profiling. RESULTS We revealed that with increasing passage number, there is a gradual decline in cell expansion efficiency, accompanied by significant changes in intracellular amino acids, purines, and pyrimidines. By integrating these metabolic features detected by SERS with transcriptomic data, we established a correlation between SERS signals and biological changes, as well as differentially expressed genes. CONCLUSION In this study, we explore the application of SERS technique to provide robust metabolic characteristics of MSCs across different passages and donors. These results demonstrate the effectiveness of SERSome in reflecting biological characteristics. Due to its sensitivity, adaptability, low cost, and feasibility for miniaturized instrumentation throughout pretreatment, measurement, and analysis, the label-free SERSome technique is suitable for monitoring MSC expansion and offers significant advantages for large-scale MSC manufacturing.
Collapse
Affiliation(s)
- Xinyuan Bi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, People's Republic of China
| | - Bin Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei-Qiang Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, People's Republic of China.
| | - Hanyu Rao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Zhang S, Zhang C, Fu Y, Li L, Huang C, Lin Y, Zhu C, Francisco JS, He Z, Zhou X, Wang J. Role of an Ice Surface in the Photoreaction of Coumarins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11346-11353. [PMID: 36066243 DOI: 10.1021/acs.langmuir.2c01637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ice affects many chemical reactions in nature, which greatly influences the atmosphere, climate, and life. However, the exact mechanism of ice in these chemical reactions remains elusive. For example, it is still an open question as to whether ice can act as a catalyst to greatly enhance the reactivity and selectivity, which is essential for the production of some natural compounds in our planet. Here, we discover that ice can lead to high efficiency and stereoselectivity of the [2 + 2] photodimerization of coumarin and its derivatives. The conversion of the [2 + 2] photodimerization of coumarins enhanced by ice is dozens of times higher than that in the unfrozen saturated solution, and the reaction displays a high syn-head-head stereoselectivity (>95%) in comparison with those in the absence of the ice. Note that almost no reaction occurs in the crystal powder and melt of the coumarins, indicating that the role of ice in the photodimerization reaction is not simply due to the usual mechanisms found in the freezing concentration. We further reveal that the reaction rate is found to be proportional to the total area of the ice surface and follows Michaelis-Menten-like kinetics, indicating that the ice surface catalyzes the reaction. Molecular dynamics simulations demonstrate that ice surfaces can induce reactants to form a two-dimensional liquid-crystal-ordered layer with a suitable intermolecular distance and unique side-by-side packing, facilitating stereoselective photodimerization for syn-head-head dimers. These findings give evidence that ice-surface-induced molecular assembly may play an important role in atmospheric heterogeneous photoreaction processes.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chuanbiao Zhang
- College of Physics and Electronic Engineering, Heze University, Heze 274015, P. R. China
| | - Yang Fu
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Linhai Li
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chuanbing Huang
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yang Lin
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100190, P. R. China
- Department of Earth & Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph S Francisco
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100190, P. R. China
| | - Zhiyuan He
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | | | - Jianjun Wang
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
3
|
Chen Q, Jiao T, Yang M, Li H, Ahmad W, Hassan MM, Guo Z, Ali S. Pre etched Ag nanocluster as SERS substrate for the rapid quantification of AFB1 in peanut oil via DFT coupled multivariate calibration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118411. [PMID: 32474366 DOI: 10.1016/j.saa.2020.118411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/11/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The current study extends the use of surface-enhanced Raman spectroscopy (SERS) combined with density functional theory (DFT) and multivariate calibration towards the rapid quantification of aflatoxin B1 (AFB1) in peanut oil samples. It reports the design of pre etched Ag nanocluster as an active SERS substrate for quantifying AFB1, after being impregnated on its surface. The SERS spectra of AFB1@pre etched Ag nanocluster was recorded and its respective theoretical spectrum was calculated by density functional theory (DFT) to assign the characteristic peaks. The baseline drift and rotation effects were masked by the first-order derivative preprocessing method followed by multivariate calibration. The BP-AdaBoost model exhibited optimum prediction (Rp = 0.9283 and 0.9332) ability over the concentration range 5-100 and 100-1000 ngmL-1, respectively. The limit of detection calculated was 5.0 ngmL-1 and the obtained recoveries were in the range from 90.4% to 113.1% in spiked peanut oil samples. Additionally, precision analysis revealed an RSD ca. 5%, suggesting the applicability of the pre etched Ag nanocluster SERS substrate towards AFB1 detection. Thus, the proposed SERS platform exploiting DFT and BP-AdaBoost model was found reproducible for the quantification of AFB1 in peanut oil.
Collapse
Affiliation(s)
- Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Tianhui Jiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mingxiu Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
4
|
Towards interference free HPLC-SERS for the trace analysis of drug metabolites in biological fluids. J Pharm Biomed Anal 2016; 136:38-43. [PMID: 28063334 DOI: 10.1016/j.jpba.2016.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 11/21/2022]
Abstract
Sofosbuvir metabolite, 2'-deoxy-2'-fluoro-2'-C-methyluridine (PSI-6206) was studied for the first time by surface enhanced Raman spectroscopy (SERS) using the paper-based SERS substrate. The quantification limit of PSI-6206 by SERS was found to be 13ngL-1 (R2 value=0.959, RSD=5.23%). For the structural and quantitative analysis of PSI-6206 in blood plasma, an interference-free HPLC-SERS method was developed and compared to HPLC-DAD and HPLC-MS methods. The SERS quantification of the drug by the paper substrate was 4 orders of magnitude more sensitive than that by the diode array detector. In addition, the SERS detection provided unique structural identification of the drug in blood plasma, similar to Mass spectroscopy detector. Due to the disposable nature of the SERS substrate, the new method does not suffer from the known "memory effect" which is known to lead to false positive identification in traditional HPLC-SERS methods. Therefore, the presented HPLC-paper SERS platform holds great potential for the sensitive and cost effective determination of drugs and their metabolites in biological fluids.
Collapse
|
5
|
Miljanić S, Dijanošić A, Matić I. Adsorption mechanisms of RNA mononucleotides on silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:1357-1362. [PMID: 25306131 DOI: 10.1016/j.saa.2014.09.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/28/2014] [Accepted: 09/18/2014] [Indexed: 06/04/2023]
Abstract
Surface-enhanced Raman scattering (SERS) of four RNA mononucleotides (AMP, GMP, CMP and UMP) has been studied on the citrate-reduced silver colloid aggregated with sodium sulfate. Concentration dependent spectra in the range of 1×10(-7)-1×10(-4) mol dm(-3) were obtained, assigned and interpreted according to the surface selection rules. For purine mononucleotides, AMP and GMP, adsorption onto the silver nanoparticles through the six-membered ring of the nitrogenous base was suggested. Concentration dependent splitting of the ring breathing band in the spectra of AMP indicated coexistence of two species on the silver surface, which differed in contribution of the adenine N1 atom and the exocyclic NH2 group in binding. Unlike the AMP spectra, the spectra of GMP implied only one mode of adsorption of the molecules onto the silver nanoparticles, taking place through the guanine N1H and C=O group. Weak SERS spectra of pyrimidine mononucleotides, CMP and UMP, pointed to involvement of carbonyl oxygen in adsorption process, whereby the molecules adopted the position on the nanoparticles with ribose close to the metal surface. Intense bands in the low wavenumber region, associated with stretching of the formed Ag-N and/or Ag-O bonds, supported chemical binding of the RNA mononucleotides with the silver surface.
Collapse
Affiliation(s)
- Snežana Miljanić
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| | - Adriana Dijanošić
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Ivona Matić
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| |
Collapse
|
6
|
Chirumamilla M, Toma A, Gopalakrishnan A, Das G, Zaccaria RP, Krahne R, Rondanina E, Leoncini M, Liberale C, De Angelis F, Di Fabrizio E. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2353-2358. [PMID: 24452910 DOI: 10.1002/adma.201304553] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/09/2013] [Indexed: 06/03/2023]
Abstract
Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering.
Collapse
Affiliation(s)
- Manohar Chirumamilla
- Nanostructures, Istituto Italiano di Tecnologia, via Morego 30, Genova, 16163, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Singh DK, Ganbold EO, Cho EM, Lee CM, Yang SI, Joo SW. Tautomerism of a thiabendazole fungicide on Ag and Au nanoparticles investigated by Raman spectroscopy and density functional theory calculations. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.06.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|