1
|
Zambrano P, Manrique-Moreno M, Petit K, Colina JR, Jemiola-Rzeminska M, Suwalsky M, Strzalka K. Differential scanning calorimetry in drug-membrane interactions. Biochem Biophys Res Commun 2024; 709:149806. [PMID: 38579619 DOI: 10.1016/j.bbrc.2024.149806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Differential Scanning Calorimetry (DSC) is a central technique in investigating drug - membrane interactions, a critical component of pharmaceutical research. DSC measures the heat difference between a sample of interest and a reference as a function of temperature or time, contributing essential knowledge on the thermally induced phase changes in lipid membranes and how these changes are affected by incorporating pharmacological substances. The manuscript discusses the use of phospholipid bilayers, which can form structures like unilamellar and multilamellar vesicles, providing a simplified yet representative membrane model to investigate the complex dynamics of how drugs interact with and penetrate cellular barriers. The manuscript consolidates data from various studies, providing a comprehensive understanding of the mechanisms underlying drug - membrane interactions, the determinants that influence these interactions, and the crucial role of DSC in elucidating these components. It further explores the interactions of specific classes of drugs with phospholipid membranes, including non-steroidal anti-inflammatory drugs, anticancer agents, natural products with antioxidant properties, and Alzheimer's disease therapeutics. The manuscript underscores the critical importance of DSC in this field and the need for continued research to improve our understanding of these interactions, acting as a valuable resource for researchers.
Collapse
Affiliation(s)
- Pablo Zambrano
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| | - Marcela Manrique-Moreno
- Faculty of Natural of Exact Sciences, Chemistry Institute, University of Antioquia, A.A. 1226, Medellin, 050010, Antioquia, Colombia
| | - Karla Petit
- LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío, Concepción, Chile
| | - José R Colina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Malgorzata Jemiola-Rzeminska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mario Suwalsky
- Facultad de Medicina, Universidad Católica de La Santísima Concepción, Concepción, Chile
| | - Kazimierz Strzalka
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
2
|
Optimization of nanoemulsified systems containing lamellar phases for co-delivery of celecoxib and endoxifen to the skin aiming for breast cancer chemoprevention and treatment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Çetinel ZÖ, Bilge D. The effects of miltefosine on the structure and dynamics of DPPC and DPPS liposomes mimicking normal and cancer cell membranes: FTIR and DSC studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Klaiss-Luna MC, Manrique-Moreno M. Infrared Spectroscopic Study of Multi-Component Lipid Systems: A Closer Approximation to Biological Membrane Fluidity. MEMBRANES 2022; 12:534. [PMID: 35629860 PMCID: PMC9147058 DOI: 10.3390/membranes12050534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
Abstract
Membranes are essential to cellular organisms, and play several roles in cellular protection as well as in the control and transport of nutrients. One of the most critical membrane properties is fluidity, which has been extensively studied, using mainly single component systems. In this study, we used Fourier transform infrared spectroscopy to evaluate the thermal behavior of multi-component supported lipid bilayers that mimic the membrane composition of tumoral and non-tumoral cell membranes, as well as microorganisms such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. The results showed that, for tumoral and non-tumoral membrane models, the presence of cholesterol induced a loss of cooperativity of the transition. However, in the absence of cholesterol, the transitions of the multi-component lipid systems had sigmoidal curves where the gel and fluid phases are evident and where main transition temperatures were possible to determine. Additionally, the possibility of designing multi-component lipid systems showed the potential to obtain several microorganism models, including changes in the cardiolipin content associated with the resistance mechanism in Staphylococcus aureus. Finally, the potential use of multi-component lipid systems in the determination of the conformational change of the antimicrobial peptide LL-37 was studied. The results showed that LL-37 underwent a conformational change when interacting with Staphylococcus aureus models, instead of with the erythrocyte membrane model. The results showed the versatile applications of multi-component lipid systems studied by Fourier transform infrared spectroscopy.
Collapse
Affiliation(s)
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| |
Collapse
|
5
|
Civelek N, Bilge D. Investigating the Molecular Effects of Curcumin by Using Model Membranes. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-021-09710-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Aragón-Muriel A, Liscano Y, Morales-Morales D, Polo-Cerón D, Oñate-Garzón J. A Study of the Interaction of a New Benzimidazole Schiff Base with Synthetic and Simulated Membrane Models of Bacterial and Mammalian Membranes. MEMBRANES 2021; 11:membranes11060449. [PMID: 34208443 PMCID: PMC8235182 DOI: 10.3390/membranes11060449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022]
Abstract
Biological membranes are complex dynamic systems composed of a great variety of carbohydrates, lipids, and proteins, which together play a pivotal role in the protection of organisms and through which the interchange of different substances is regulated in the cell. Given the complexity of membranes, models mimicking them provide a convenient way to study and better understand their mechanisms of action and their interactions with biologically active compounds. Thus, in the present study, a new Schiff base (Bz-Im) derivative from 2-(m-aminophenyl)benzimidazole and 2,4-dihydroxybenzaldehyde was synthesized and characterized by spectroscopic and spectrometric techniques. Interaction studies of (Bz-Im) with two synthetic membrane models prepared with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and DMPC/1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) 3:1 mixture, imitating eukaryotic and prokaryotic membranes, respectively, were performed by applying differential scanning calorimetry (DSC). Molecular dynamics simulations were also developed to better understand their interactions. In vitro and in silico assays provided approaches to understand the effect of Bz-Im on these lipid systems. The DSC results showed that, at low compound concentrations, the effects were similar in both membrane models. By increasing the concentration of Bz-Im, the DMPC/DMPG membrane exhibited greater fluidity as a result of the interaction with Bz-Im. On the other hand, molecular dynamics studies carried out on the erythrocyte membrane model using the phospholipids POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), SM (N-(15Z-tetracosenoyl)-sphing-4-enine-1-phosphocholine), and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) revealed that after 30 ns of interaction, both hydrophobic interactions and hydrogen bonds were responsible for the affinity of Bz-Im for PE and SM. The interactions of the imine with POPG (1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphoglycerol) in the E. coli membrane model were mainly based on hydrophobic interactions.
Collapse
Affiliation(s)
- Alberto Aragón-Muriel
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760031, Colombia;
| | - Yamil Liscano
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia;
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior, Coyoacán, Mexico D.F. 04510, Mexico;
| | - Dorian Polo-Cerón
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760031, Colombia;
- Correspondence: (D.P.-C.); (J.O.-G.)
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia;
- Correspondence: (D.P.-C.); (J.O.-G.)
| |
Collapse
|
7
|
Aragón-Muriel A, Liscano Y, Upegui Y, Robledo SM, Ramírez-Apan MT, Morales-Morales D, Oñate-Garzón J, Polo-Cerón D. In Vitro Evaluation of the Potential Pharmacological Activity and Molecular Targets of New Benzimidazole-Based Schiff Base Metal Complexes. Antibiotics (Basel) 2021; 10:728. [PMID: 34208759 PMCID: PMC8235109 DOI: 10.3390/antibiotics10060728] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Metal-based drugs, including lanthanide complexes, have been extremely effective in clinical treatments against various diseases and have raised major interest in recent decades. Hence, in this work, a series of lanthanum (III) and cerium (III) complexes, including Schiff base ligands derived from (1H-benzimidazol-2-yl)aniline, salicylaldehyde, and 2,4-dihydroxybenzaldehyde were synthesized and characterized using different spectroscopic methods. Besides their cytotoxic activities, they were examined in human U-937 cells, primate kidney non-cancerous COS-7, and six other, different human tumor cell lines: U251, PC-3, K562, HCT-15, MCF-7, and SK-LU-1. In addition, the synthesized compounds were screened for in vitro antiparasitic activity against Leishmania braziliensis, Plasmodium falciparum, and Trypanosoma cruzi. Additionally, antibacterial activities were examined against two Gram-positive strains (S. aureus ATCC® 25923, L. monocytogenes ATCC® 19115) and two Gram-negative strains (E. coli ATCC® 25922, P. aeruginosa ATCC® 27583) using the microdilution method. The lanthanide complexes generally exhibited increased biological activity compared with the free Schiff base ligands. Interactions between the tested compounds and model membranes were examined using differential scanning calorimetry (DSC), and interactions with calf thymus DNA (CT-DNA) were investigated by ultraviolet (UV) absorption. Molecular docking studies were performed using leishmanin (1LML), cruzain (4PI3), P. falciparum alpha-tubulin (GenBank sequence CAA34101 [453 aa]), and S.aureus penicillin-binding protein 2a (PBP2A; 5M18) as the protein receptors. The results lead to the conclusion that the synthesized compounds exhibited a notable effect on model membranes imitating mammalian and bacterial membranes and rolled along DNA strands through groove interactions. Interactions between the compounds and studied receptors depended primarily on ligand structures in the molecular docking study.
Collapse
Affiliation(s)
- Alberto Aragón-Muriel
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760001, Colombia;
| | - Yamil Liscano
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia; (Y.L.); (J.O.-G.)
| | - Yulieth Upegui
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (Y.U.); (S.M.R.)
| | - Sara M. Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (Y.U.); (S.M.R.)
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior, Coyoacán, México 04510, Mexico; (M.T.R.-A.); (D.M.-M.)
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior, Coyoacán, México 04510, Mexico; (M.T.R.-A.); (D.M.-M.)
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia; (Y.L.); (J.O.-G.)
| | - Dorian Polo-Cerón
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760001, Colombia;
| |
Collapse
|
8
|
Regulation of Lipid Membrane Partitioning of Tamoxifen by Ionic Strength and Cholesterol. Pharm Res 2020; 37:53. [DOI: 10.1007/s11095-020-2771-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/24/2020] [Indexed: 11/26/2022]
|
9
|
Arias JM, Cobos Picot RA, Tuttolomondo ME, Ben Altabef A, Díaz SB. Interaction of N-acetylcysteine with DPPC liposomes at different pH: a physicochemical study. NEW J CHEM 2020. [DOI: 10.1039/c9nj06167c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The N-acetylcysteine (NAC) is a commonly used mucolytic and antioxidant agent.
Collapse
Affiliation(s)
- Juan Marcelo Arias
- INQUINOA-CONICET
- Cátedra de Fisicoquímica I
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
| | - Rafael A. Cobos Picot
- INQUINOA-CONICET
- Cátedra de Fisicoquímica I
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
| | - María Eugenia Tuttolomondo
- INQUINOA-CONICET
- Cátedra de Fisicoquímica I
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
| | - Aida Ben Altabef
- INQUINOA-CONICET
- Cátedra de Fisicoquímica I
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
| | - Sonia Beatriz Díaz
- INQUINOA-CONICET
- Cátedra de Fisicoquímica I
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
| |
Collapse
|
10
|
da Fonseca TG, Abessa DMS, Bebianno MJ. Effects of mixtures of anticancer drugs in the benthic polychaete Nereis diversicolor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1180-1192. [PMID: 31252116 DOI: 10.1016/j.envpol.2019.05.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 05/24/2023]
Abstract
The increasing consumption of anticancer drugs through single and/or combinatory chemotherapy worldwide raised concern regarding their toxicity burden in coastal zones. The toxicity of a mixture of three compounds involving the drugs cisplatin (CisPt), cyclophosphamide (CP) and tamoxifen (TAM) was determined on the marine polychaete Nereis diversicolor exposed to an increasing range of their concentrations, respectively: Mix A: 0.1 + 10 + 0.1 ng L-1; Mix B: 10 + 100 + 10 ng L-1; Mix C: 100 + 500 + 25 ng L-1; Mix D: 100 + 1000 + 100 ng L-1. Different endpoints were assessed, including disturbance in the burrowing behaviour, neurotoxicity (acetylcholinesterase - AChE activity), antioxidant enzymes (superoxide dismutase - SOD; catalase - CAT; selenium-dependent glutathione peroxidase - Se-GPx and total glutathione peroxidases T-GPx activities), biotransformation metabolism (glutathione-S-transferases - GST), lipid peroxidation (LPO) and genotoxicity (DNA damage). Biological effects of the mixtures of anticancer compounds on N. diversicolor were compared with previous studies about effects on the same biological model under single-drug exposure conducted with the same molecules. Regarding SOD activity, TAM showed an antagonist effect over CisPt and CP in mixtures C and D. In Mix D, there was a synergistic effect of TAM and CisPt that inhibited CAT activity and an additive interaction of CisPt and CP on the Phase II biotransformation enzyme. Drugs in Mix A also suppressed polychaetes' GST activity, although different from the respective single-drug responses, besides able to induce T-GPx activity, that was not sufficient to avoid oxidative damage and mid-grade DNA damage. Due to the absence of burrowing impairment in Mix A, mechanisms involved in neurotoxicity were other than the one driven by AChE alterations. At the intermediary concentrations (Mix B and C), only LPO occurred. Data from drugs individually may not predict the risks provided by mixtures.
Collapse
Affiliation(s)
- Tainá Garcia da Fonseca
- Centro de Investigação Marinha e Ambiental (CIMA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal; NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP, 11330-900, Brazil
| | - Denis M S Abessa
- NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP, 11330-900, Brazil
| | - Maria João Bebianno
- Centro de Investigação Marinha e Ambiental (CIMA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| |
Collapse
|
11
|
Cakmak Arslan G, Severcan F. The effects of radioprotectant and potential antioxidant agent amifostine on the structure and dynamics of DPPC and DPPG liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1240-1251. [PMID: 31028720 DOI: 10.1016/j.bbamem.2019.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
|
12
|
Corrales Chahar F, Díaz S, Ben Altabef A, Gervasi C, Alvarez P. Interactions of valproic acid with lipid membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Chem Phys Lipids 2019; 218:125-135. [DOI: 10.1016/j.chemphyslip.2018.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022]
|
13
|
Azalomycin F5a, a polyhydroxy macrolide binding to the polar head of phospholipid and targeting to lipoteichoic acid to kill methicillin-resistant Staphylococcus aureus. Biomed Pharmacother 2019; 109:1940-1950. [DOI: 10.1016/j.biopha.2018.11.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 11/22/2022] Open
|
14
|
Toxicity of lupane derivatives on anionic membrane models, isolated rat mitochondria and selected human cell lines: Role of terminal alkyl chains. Chem Biol Interact 2018; 296:198-210. [DOI: 10.1016/j.cbi.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 01/11/2023]
|
15
|
Iwasaki F, Luginbühl S, Suga K, Walde P, Umakoshi H. Fluorescent Probe Study of AOT Vesicle Membranes and Their Alteration upon Addition of Aniline or the Aniline Dimer p-Aminodiphenylamine (PADPA). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1984-1994. [PMID: 28161960 DOI: 10.1021/acs.langmuir.6b04480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Artificial vesicles formed from sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in aqueous solution are used successfully as additives for enzymatic oligomerizations or polymerizations of aniline or the aniline dimer p-aminodiphenylamine (PADPA) under slightly acidic conditions (e.g., pH 4.3 with horseradish peroxidase and hydrogen peroxide as oxidants). In these systems, the reactions occur membrane surface-confined. Therefore, (i) the physicochemical properties of the vesicle membrane and (ii) the interaction of aniline or PADPA with the AOT membrane play crucial roles in the progress and final outcome of the reactions. For this reason, the properties of AOT vesicles with and without added aniline or PADPA were investigated by using two fluorescent membrane probes: 1,6-diphenyl-1,3,5-hexatriene (DPH) and 6-lauroyl-2-dimethylaminonaphthalene (Laurdan). DPH and Laurdan were used as "sensors" of the membrane fluidity, surface polarity, and membrane phase state. Moreover, the effect of hexanol, alone or in combination with aniline or PADPA, as a possible modifier of the AOT membrane, was also studied with the aim of evaluating whether the membrane fluidity and surface polarity is altered significantly by hexanol, which, in turn, may have an influence on the mentioned types of reactions. The data obtained indicate that the AOT vesicle membrane at room temperature and pH 4.3 (0.1 M NaH2PO4) is more fluid and has a more polar surface than in the case of fluid phospholipid vesicle membranes formed from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Furthermore, the fluorescence measurements indicate that mixed AOT-hexanol membranes are less fluid than pure AOT membranes and that they have a lower surface polarity than pure AOT membranes. PADPA strongly binds to AOT and to mixed AOT/hexanol membranes and leads to drastic changes in the membrane properties (decrease in fluidity and surface polarity), resulting in Laurdan fluorescence spectra, which are characteristic for intramembrane phase separations (coexistence of ordered and disordered domains). This means that highly fluid AOT membranes transform upon the addition of PADPA into membranes that have ordered domains. Although the relevance of this finding for the enzymatic oligomerization of PADPA is not yet clear, it is also of interest if one likes to use heterogeneous vesicle membranes as additives for carrying out membrane surface-confined reactions that do not necessarily involve PADPA as a reactant.
Collapse
Affiliation(s)
- Fumihiko Iwasaki
- Bio-Inspired Chemical Engineering Lab, Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Sandra Luginbühl
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Keishi Suga
- Bio-Inspired Chemical Engineering Lab, Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Peter Walde
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Hiroshi Umakoshi
- Bio-Inspired Chemical Engineering Lab, Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
16
|
Biophysics in cancer: The relevance of drug-membrane interaction studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2231-2244. [DOI: 10.1016/j.bbamem.2016.06.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 12/26/2022]
|
17
|
Peng B, Ding XY, Sun C, Liu W, Zhang JZH, Zhao X. The effect of POPC acyl chains packing by aromatic amino acid methyl esters investigated by ATR-FTIR combined with QM calculations. RSC Adv 2016. [DOI: 10.1039/c6ra05903a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The packing of POPC acyl chains can be influenced by aromatic amino acid methyl esters significantly, thus the HCCH motif is packed closed to the other one of an adjacent acyl chain with enhancement by dispersion interactions.
Collapse
Affiliation(s)
- Bo Peng
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - Xiao-Yan Ding
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - Chao Sun
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - Wei Liu
- State Key Laboratory of Precision Spectroscopy
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - John Z. H. Zhang
- State Key Laboratory of Precision Spectroscopy
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - Xin Zhao
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| |
Collapse
|
18
|
Khadka NK, Cheng X, Ho CS, Katsaras J, Pan J. Interactions of the anticancer drug tamoxifen with lipid membranes. Biophys J 2015; 108:2492-2501. [PMID: 25992727 PMCID: PMC4457044 DOI: 10.1016/j.bpj.2015.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 04/06/2015] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Interactions of the hydrophobic anticancer drug tamoxifen (TAM) with lipid model membranes were studied using calcein-encapsulated vesicle leakage, attenuated total reflection Fourier transform infrared (FTIR) spectroscopy, small-angle neutron scattering (SANS), atomic force microscopy (AFM) based force spectroscopy, and all-atom molecular dynamics (MD) simulations. The addition of TAM enhances membrane permeability, inducing calcein to translocate from the interior to the exterior of lipid vesicles. A large decrease in the FTIR absorption band's magnitude was observed in the hydrocarbon chain region, suggesting suppressed bond vibrational dynamics. Bilayer thickening was determined from SANS data. Force spectroscopy measurements indicate that the lipid bilayer area compressibility modulus KA is increased by a large amount after the incorporation of TAM. MD simulations show that TAM decreases the lipid area and increases chain order parameters. Moreover, orientational and positional analyses show that TAM exhibits a highly dynamic conformation within the lipid bilayer. Our detailed experimental and computational studies of TAM interacting with model lipid membranes shed new light on membrane modulation by TAM.
Collapse
Affiliation(s)
- Nawal K Khadka
- Department of Physics, University of South Florida, Tampa, Florida
| | - Xiaolin Cheng
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Chian Sing Ho
- Department of Physics, University of South Florida, Tampa, Florida
| | - John Katsaras
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee; Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, Florida.
| |
Collapse
|
19
|
Ramana LN, Sharma S, Sethuraman S, Ranga U, Krishnan UM. Stealth anti-CD4 conjugated immunoliposomes with dual antiretroviral drugs--modern Trojan horses to combat HIV. Eur J Pharm Biopharm 2014; 89:300-11. [PMID: 25500283 DOI: 10.1016/j.ejpb.2014.11.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/28/2014] [Accepted: 11/25/2014] [Indexed: 11/25/2022]
Abstract
Highly active antiretroviral therapy (HAART) is the currently employed therapeutic intervention against AIDS where a drug combination is used to reduce the viral load. The present work envisages the development of a stealth anti-CD4 conjugated immunoliposomes containing two anti-retroviral drugs (nevirapine and saquinavir) that can selectively home into HIV infected cells through the CD4 receptor. The nanocarrier was characterized using transmission electron microscopy, FTIR, differential scanning calorimetry, particle size and zeta potential. The cell uptake was also evaluated qualitatively using confocal microscopy and quantitatively by flow cytometry. The drug to lipid composition was optimized for maximum encapsulation of the two drugs. Both drugs were found to localize in different regions of the liposome. The release of the reverse transcriptase inhibitor was dominant during the early phases of the release while in the later phases, the protease inhibitor is the major constituent released. The drugs delivered via anti-CD4 conjugated immunoliposomes inhibited viral proliferation at a significantly lower concentration as compared to free drugs. In vitro studies of nevirapine to saquinavir combination at a ratio of 6.2:5 and a concentration as low as 5 ng/mL efficiently blocked viral proliferation suggesting that co-delivery of anti-retroviral drugs holds a greater promise for efficient management of HIV-1 infection.
Collapse
Affiliation(s)
| | - Shilpee Sharma
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur, India
| | - Udaykumar Ranga
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur, India.
| |
Collapse
|
20
|
Bilge D, Sahin I, Kazanci N, Severcan F. Interactions of tamoxifen with distearoyl phosphatidylcholine multilamellar vesicles: FTIR and DSC studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:250-256. [PMID: 24792199 DOI: 10.1016/j.saa.2014.04.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/06/2014] [Accepted: 04/06/2014] [Indexed: 06/03/2023]
Abstract
Interactions of a non-steroidal antiestrogen drug, tamoxifen (TAM), with distearoyl-sn-glycero-3-phosphatidylcholine (DSPC) multilamellar liposomes (MLVs) were investigated as a function of drug concentration (1-15 mol%) by using two noninvasive techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR spectroscopy results show that increasing TAM concentrations (except 1 mol%) increased the wavenumbers of the CH2 stretching modes, implying an disordering effect for DSPC MLVs both in the gel and liquid crystalline phases. The bandwidth values of the CH2 stretchings except for 1 mol% increased when TAM concentrations increased for DSPC liposomes, indicating an increase in the dynamics of liposomes. The CO stretching and PO2- antisymmetric double bond stretching bands were analyzed to study interactions of TAM with head groups of lipids. As the concentrations of TAM increased, dehydration occurred around these functional groups in the polar part of the lipids. The DSC studies on thermal properties of DSPC lipids indicate that TAM eliminated the pre transition, shifted the main phase transition to lower temperatures and broadened the phase transition curve of the liposomes.
Collapse
Affiliation(s)
- Duygu Bilge
- Department of Physics, Faculty of Science, Ege University, 35100 İzmir, Turkey
| | - Ipek Sahin
- Department of Physics, Faculty of Science, Ege University, 35100 İzmir, Turkey
| | - Nadide Kazanci
- Department of Physics, Faculty of Science, Ege University, 35100 İzmir, Turkey.
| | - Feride Severcan
- Department of Biological Sciences, Middle East Technical University, 06531 Ankara, Turkey
| |
Collapse
|
21
|
Agomelatine strongly interacts with zwitterionic DPPC and charged DPPG membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2798-806. [PMID: 25091390 DOI: 10.1016/j.bbamem.2014.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 07/07/2014] [Accepted: 07/25/2014] [Indexed: 01/01/2023]
Abstract
Depression is one of the most common psychiatric diseases in the population. Agomelatine is a novel antidepressant drug with melatonin receptor agonistic and serotonin 5-HT2C antagonistic properties. Furthermore, being a melatonergic drug, agomelatine has the potential of being used in therapeutic applications like melatonin as an antioxidant, anti-inflammatory and antiapoptotic drug. The action mechanism of agomelatine on the membrane structure has not been clarified yet. In the present study, we aimed to investigate the interaction of agomelatine with model membranes of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylgylcerol (DPPG) by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). We found that agomelatine interacts with the head group in such a manner that it destabilizes the membrane architecture to a large extent. Thus, agomelatine causes alterations in the order, packing and dynamics of the DPPC and DPPG model membranes. Our results suggest that agomelatine strongly interacts with zwitterionic and charged membrane phospholipids. Because lipid structure and dynamics may have influence on the structure of membrane bound proteins and affect the signal transduction systems of membranes, these effects of agomelatine may be important in its action mechanism.
Collapse
|
22
|
Stokes G, Conboy JC. Measuring selective estrogen receptor modulator (SERM)-membrane interactions with second harmonic generation. J Am Chem Soc 2014; 136:1409-17. [PMID: 24410282 PMCID: PMC4004268 DOI: 10.1021/ja409250y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Indexed: 12/29/2022]
Abstract
The interaction of selective estrogen receptor modulators (SERMs) with lipid membranes has been measured at clinically relevant serum concentrations using the label-free technique of second harmonic generation (SHG). The SERMs investigated in this study include raloxifene, tamoxifen, and the tamoxifen metabolites 4-hydroxytamoxifen, N-desmethyltamoxifen, and endoxifen. Equilibrium association constants (Ka) were measured for SERMs using varying lipid compositions to examine how lipid phase, packing density, and cholesterol content impact SERM-membrane interactions. Membrane-binding properties of tamoxifen and its metabolites were compared on the basis of hydroxyl group substitution and amine ionization to elucidate how the degree of drug ionization impacts membrane partitioning. SERM-membrane interactions were probed under multiple pH conditions, and drug adsorption was observed to vary with the concentration of soluble neutral species. The agreement between Ka values derived from SHG measurements of the interactions between SERMs and artificial cell membranes and independent observations of the SERMs efficacy from clinical studies suggests that quantifying membrane adsorption properties may be important for understanding SERM action in vivo.
Collapse
Affiliation(s)
- Grace
Y. Stokes
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake
City, Utah 84112, United States
| | - John C. Conboy
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake
City, Utah 84112, United States
| |
Collapse
|