1
|
Al Matarneh CM, Nicolescu A, Shova S, Apostu M, Puf R, Mocci F, Laaksonen A, Mangalagiu II, Danac R. Revisiting Fused-Pyrrolo-1,10-Phenanthroline Derivatives: Novel Transformations and Stability Studies. ChemistryOpen 2025:e2400365. [PMID: 40326146 DOI: 10.1002/open.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/10/2025] [Indexed: 05/07/2025] Open
Abstract
In this study, new pyrrolo[3',4':3,4]pyrrolo[1,2-a][1,10]phenanthroline derivatives are developed and their stabilities and transformation pathways are investigated. The synthetic approach toward these novel derivatives include a pivotal [3 + 2] cycloaddition of in situ generated ylides, followed by cycloadducts oxidation and other unexpected transformations. The structures of the intermediate and final compounds are proposed based on information obtained from several spectral techniques. Stability study reveal that electron-donating groups in the para position of the phenyl ring promote easier oxidation, whereas electron-withdrawing substituents enhance the stability of the compounds. The acid-base titration of α-monosubstituted 1,10-phenanthroline 6a results in a reversible color change, which is preliminarily explored through spectral methods.
Collapse
Affiliation(s)
- Cristina M Al Matarneh
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Alina Nicolescu
- NMR Laboratory, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Sergiu Shova
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Mircea Apostu
- Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iasi, 11 Carol I, Iasi, 700506, Romania
| | - Razvan Puf
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Francesca Mocci
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, 09124, Italy
| | - Aatto Laaksonen
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania
- Department of Materials and Environmental Chemistry, Division of Physical ChemistryArrhenius Laboratory, Stockholm University, Stockholm, 106 91, Sweden
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
- Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, Luleå, 97187, Sweden
| | - Ionel I Mangalagiu
- Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iasi, 11 Carol I, Iasi, 700506, Romania
| | - Ramona Danac
- Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iasi, 11 Carol I, Iasi, 700506, Romania
| |
Collapse
|
2
|
Villa-Pérez C, Cadavid-Vargas JF, Medina JJM, Echeverría GA, Camí GE, Virgilio ALD, Soria DB. Physicochemical and biological studies of Ni(II), Cu(II) and Zn(II) ternary complexes of sulfaquinoxaline and 2,2’-bipyrimidine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Falkievich DB, Martínez Medina JJ, Alegre WS, López Tévez LL, Franca CA, Ferrer EG, Williams PAM. Computational studies, antimicrobial activity, inhibition of biofilm production and safety profile of the cadmium complex of 1,10‐phenanthroline and cyanoguanidine. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Carlos A. Franca
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata La Plata Argentina
| | - Evelina G. Ferrer
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata La Plata Argentina
| | - Patricia A. M. Williams
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata La Plata Argentina
| |
Collapse
|
4
|
Sureshbabu P, Varghese B, Sujitha E, Sabiah S. Syntheses, Structure, DNA Docking and Antimicrobial Studies of Copper(II) Complexes with Diethylenetriamine and N-Bidentate Ligands. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Naso LG, Martínez Medina JJ, D'Alessandro F, Rey M, Rizzi A, Piro OE, Echeverría GA, Ferrer EG, Williams PAM. Ternary copper(II) complex of 5-hydroxytryptophan and 1,10-phenanthroline with several pharmacological properties and an adequate safety profile. J Inorg Biochem 2019; 204:110933. [PMID: 31825796 DOI: 10.1016/j.jinorgbio.2019.110933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 12/22/2022]
Abstract
We report the synthesis and biological evaluation of a ternary copper complex, [Cu(5HTP)(phen)(H2O)](NO3).2H2O, with the antioxidant agent 5-hydroxytryptophan (5-HTP) and phenanthroline (phen, added to improve its lipophilicity and membrane transport). The crystal structure of the complex was determined by X-ray diffraction methods. The complex showed antioxidant, antimicrobial, antitumor and antimetastatic properties with an adequate safety profile. The interaction of the metal with phen promotes cellular copper accumulation and cytotoxicity on human lung A549 cell line (IC50 = 3.6 μM). Furthermore, the viability of the normal human fetal lung fibroblast cell line (MRC-5) is not altered by the complex. An oxidative stress mechanism for the anticancer effect has been determined: cellular increase of reactive oxygen species (ROS), decrease of the glutathione (GSH) and oxidized GSH (GSSG) ratio and alteration of the mitochondrial potential. The complex also displays antimetastatic activities with inhibition of cell adhesion, invasion and migration. It has not mutagenic behavior and no toxicity on Artemia salina indicating its potential to act as an effective and safety antimicrobial and antitumor drug.
Collapse
Affiliation(s)
- Luciana G Naso
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina.
| | - Juan J Martínez Medina
- Universidad Nacional del Chaco Austral, Comandante Fernández 755, CP: 3700 Presidencia Roque Sáenz Peña, Chaco, Argentina
| | - Franco D'Alessandro
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina
| | - Marilin Rey
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria-Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Alberto Rizzi
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria-Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Oscar E Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y IFLP (CONICET, CCT La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Gustavo A Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y IFLP (CONICET, CCT La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Evelina G Ferrer
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina
| | - Patricia A M Williams
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina.
| |
Collapse
|
6
|
Ribeiro TC, Weiblen C, Botton SDA, Pereira DIB, de Jesus FPK, Verdi CM, Gressler LT, Sangioni LA, Santurio JM. In vitro susceptibility of the oomycete Pythium insidiosum to metallic compounds containing cadmium, lead, copper, manganese or zinc. Med Mycol 2018; 55:669-672. [PMID: 27816906 DOI: 10.1093/mmy/myw115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/21/2016] [Indexed: 11/14/2022] Open
Abstract
Pythium insidiosum is an aquatic oomycete that causes pythiosis, an important and severe disease of difficult treatment that affects humans, domestic and wild animals. This infection is often described in horses in Brazil and humans in Thailand. In clinical practice, we have observed many cases that do not respond to available therapies, indicating the need to explore alternative therapeutic approaches. In this sense, studies using metal compounds in conjunction with available antimicrobial agents have been demonstrated greater antimicrobial activity. Thus, in this research, we tested in vitro activities of metallic compounds containing cadmium, lead, copper, manganese, or zinc against 23 isolates of P. insidiosum. The assays were performed by broth microdilution based on CLSI M38-A2 document. The minimum inhibitory and fungicidal concentrations were established for all isolates. Copper acetate and cadmium acetate showed the highest inhibitory effects, with minimal inhibitory concentration ranging from 4-64 μg/ml and 16-256 μg/ml, respectively. The mean geometric for minimal fungicidal concentrations were, respectively, 26 μg/ml and 111.43 μg/ml for copper acetate and cadmium acetate. These results suggest that copper and cadmium can inhibit P. insidiosum growth, highlighting the greater inhibitory activity of copper acetate. In addition, our results propose that copper and/or cadmium compounds can be used in upcoming researches to formulate effective new complexed drugs against P. insidiosum in in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Tatiana Corrêa Ribeiro
- Laboratório de Pesquisas Micológicas, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria (UFSM), Campus Universitário, Prédio 20, 4139, 97105900, Santa Maria, RS, Brazil
| | - Carla Weiblen
- Departamento de Medicina Veterinária Preventiva (DMVP), Programa de Pós-graduação em Medicina Veterinária (PPGMV), Centro de Ciências Rurais, UFSM, Santa Maria, RS, Brazil
| | - Sônia de Avila Botton
- Departamento de Medicina Veterinária Preventiva (DMVP), Programa de Pós-graduação em Medicina Veterinária (PPGMV), Centro de Ciências Rurais, UFSM, Santa Maria, RS, Brazil
| | - Daniela Isabel Brayer Pereira
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Francielli Pantella Kunz de Jesus
- Laboratório de Pesquisas Micológicas, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria (UFSM), Campus Universitário, Prédio 20, 4139, 97105900, Santa Maria, RS, Brazil
| | - Camila Marina Verdi
- Laboratório de Pesquisas Micológicas, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria (UFSM), Campus Universitário, Prédio 20, 4139, 97105900, Santa Maria, RS, Brazil
| | - Leticia Trevisan Gressler
- Departamento de Medicina Veterinária Preventiva (DMVP), Programa de Pós-graduação em Medicina Veterinária (PPGMV), Centro de Ciências Rurais, UFSM, Santa Maria, RS, Brazil
| | - Luís Antonio Sangioni
- Departamento de Medicina Veterinária Preventiva (DMVP), Programa de Pós-graduação em Medicina Veterinária (PPGMV), Centro de Ciências Rurais, UFSM, Santa Maria, RS, Brazil
| | - Janio Morais Santurio
- Laboratório de Pesquisas Micológicas, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria (UFSM), Campus Universitário, Prédio 20, 4139, 97105900, Santa Maria, RS, Brazil
| |
Collapse
|
7
|
Pavelková M, Kubová K, Vysloužil J, Kejdušová M, Vetchý D, Celer V, Molinková D, Lobová D, Pechová A, Vysloužil J, Kulich P. Biological Effects of Drug-Free Alginate Beads Cross-Linked by Copper Ions Prepared Using External Ionotropic Gelation. AAPS PharmSciTech 2017; 18:1343-1354. [PMID: 27502404 DOI: 10.1208/s12249-016-0601-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022] Open
Abstract
External ionotropic gelation offers a unique possibility to entrap multivalent ions in a polymer structure. The aim of this experimental study was to prepare new drug-free sodium alginate (ALG) particles cross-linked by Cu2+ ions and to investigate their technological parameters (particle size, sphericity, surface topology, swelling capacity, copper content, release of Cu2+ ions, mucoadhesivity) and biological activity (cytotoxicity and efficiency against the most common vaginal pathogens-Herpes simplex, Escherichia coli, Candida albicans) with respect to potential vaginal administration. Beads prepared from NaALG dispersions (3 or 4%) were cross-linked by Cu2+ ions (0.5 or 1.0 M CuCl2) using external ionotropic gelation. Prepared mucoadhesive beads with particle size over 1000 μm exhibited sufficient sphericity (all ˃0.89) and copper content (214.8-249.07 g/kg), which increased with concentration of polymer and hardening solution. Dissolution behaviour was characterized by extended burst effect, followed by 2 h of copper release. The efficiency of all samples against the most common vaginal pathogens was observed at cytotoxic Cu2+ concentrations. Anti-HSV activity was demonstrated at a Cu2+ concentration of 546 mg/L. Antibacterial activity of beads (expressed as minimum inhibition concentration, MIC) was influenced mainly by the rate of Cu2+ release which was controlled by the extent of swelling capacity. Lower MIC values were found for E. coli in comparison with C. albicans. Sample ALG-3_1.0 exhibited the fastest copper release and was proved to be the most effective against both bacteria. This could be a result of its lower polymer concentration in combination with smaller particle size and thus larger surface area.
Collapse
|
8
|
Nakahata DH, Ribeiro MA, Corbi PP, Machado D, Lancellotti M, Lustri WR, da Costa Ferreira AM, Formiga AL. Synthesis, characterization and preliminary antimicrobial assays of copper(II) complexes with 2-(imidazole-2-yl)heteroaryl ligands. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Spectroscopic, optical, thermal, antimicrobial and density functional theory studies of 4-aminopyridinium 4-hydroxy benzoate hydrate crystal. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ben Nasr M, Aubert E, Ferretti V, Espinosa E, Silva PSP, Pereira LCJ, Silva MR. Supramolecular structure, IR spectroscopic and magnetic studies of a novel copper (II) complex ([Cu(phen)]2(H2PO4)2HPO4)2(H3PO4)4. J STRUCT CHEM+ 2016. [DOI: 10.1134/s0022476615080156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Sultana K, Zaib S, Hassan Khan NU, Khan I, Shahid K, Simpson J, Iqbal J. Exploiting the potential of aryl acetamide derived Zn(ii) complexes in medicinal chemistry: synthesis, structural analysis, assessment of biological profile and molecular docking studies. NEW J CHEM 2016. [DOI: 10.1039/c5nj03531g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports an unprecedented series of aryl acetamide derived Zn(ii) complexes as frontline enzyme inhibitors as well as anticancer and anti-parasitic agents.
Collapse
Affiliation(s)
| | - Sumera Zaib
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | | | - Imtiaz Khan
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Khadija Shahid
- Riphah Institute of Pharmaceutical Sciences
- Riphah International University
- Islamabad-44000
- Pakistan
| | - Jim Simpson
- Department of Chemistry
- University of Otago
- Dunedin 9054
- New Zealand
| | - Jamshed Iqbal
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| |
Collapse
|
12
|
Martínez Medina JJ, Torres CA, Alegre WS, Franca CA, López Tévez LL, Ferrer EG, Okulik NB, Williams PA. DFT vibrational assignments, in vitro antifungal activity, genotoxic and acute toxicity determinations of the [Zn(phen)2(cnge)(H2O)](NO3)2·H2O complex. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.07.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Antimicrobial Properties of Microparticles Based on Carmellose Cross-Linked by Cu(2+) Ions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:790720. [PMID: 26090444 PMCID: PMC4452273 DOI: 10.1155/2015/790720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/14/2014] [Indexed: 11/21/2022]
Abstract
Carmellose (CMC) is frequently used due to its high biocompatibility, biodegradability, and low immunogenicity for development of site-specific or controlled release drug delivery systems. In this experimental work, CMC dispersions in two different concentrations (1% and 2%) cross-linked by copper (II) ions (0.5, 1, 1.5, or 2.0 M CuCl2) were used to prepare microspheres with antimicrobial activity against Escherichia coli and Candida albicans, both frequently occurring pathogens which cause vaginal infections. The microparticles were prepared by an ionotropic gelation technique which offers the unique possibility to entrap divalent copper ions in a CMC structure and thus ensure their antibacterial activity. Prepared CMC microspheres exhibited sufficient sphericity. Both equivalent diameter and copper content were influenced by CMC concentration, and the molarity of copper (II) solution affected only the copper content results. Selected samples exhibited stable but pH-responsive behaviour in environments which corresponded with natural (pH 4.5) and inflamed (pH 6.0) vaginal conditions. All the tested samples exhibited proven substantial antimicrobial activity against both Gram-negative bacteria Escherichia coli and yeast Candida albicans. Unexpectedly, a crucial parameter for microsphere antimicrobial activity was not found in the copper content but in the swelling capacity of the microparticles and in the degree of CMC surface shrinking.
Collapse
|
14
|
Anti-thyroid and antifungal activities, BSA interaction and acid phosphatase inhibition of methimazole copper(II) complexes. Chem Biol Interact 2015; 229:64-72. [DOI: 10.1016/j.cbi.2014.12.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/09/2014] [Accepted: 12/31/2014] [Indexed: 11/21/2022]
|
15
|
Chans GM, Gómez E, Gómez-Vidales V, Toscano RA, Álvarez-Toledano C. Synthesis, molecular structure, and spectral analysis of copper(II) complexes derived from pyridinediols. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.982111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Guillermo M. Chans
- Instituto de Química, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Elizabeth Gómez
- Instituto de Química, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | | - R. Alfredo Toscano
- Instituto de Química, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | |
Collapse
|
16
|
Bolhuis A, Aldrich-Wright JR. DNA as a target for antimicrobials. Bioorg Chem 2014; 55:51-9. [DOI: 10.1016/j.bioorg.2014.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 11/28/2022]
|