1
|
Putri IS, Shamsudin NF, Abdullah MA, Nurcholis M, Imran S, Yu CX, Tham CL, Mohd Aluwi MFF, Leong SW, Joko Raharjo S, Ibrahim Z, Islami D, Huq AM, Taher M, Rullah K. Theoretical investigation of selective inhibitory activity of chromone-based compounds against monoamine oxidase (MAO)-A and -B. J Biomol Struct Dyn 2024:1-18. [PMID: 39633610 DOI: 10.1080/07391102.2024.2436553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/10/2024] [Indexed: 12/07/2024]
Abstract
Monoamine oxidase (MAO) is crucial for the breakdown of monoamine neurotransmitters, making it a promising target for treating neurodegenerative disorders, such as depression, Alzheimer's disease, and Parkinson's disease. In this study, we investigated the selective inhibitory activity of chromone-based compounds against MAO-A and MAO-B for neurodegenerative disease treatment. In literary sources, thirty chromone derivatives have been identified as potential ligands for MAO-A and MAO-B inhibitors. We utilized molecular docking to evaluate how the most active compound interacted with the targeted MAO-A and MAO-B. Compound 2 g, the most active for MAO-A, demonstrated a lower CDOCKER energy compared to the co-crystallized ligand. Meanwhile, compound 2f, the most active for MAO-B, showed a CDOCKER energy similar to the co-crystallized ligand and exhibited similar binding patterns. Furthermore, we constructed a quantitative structure-activity relationship (QSAR) model to predict the properties and estimate IC50 values for 30 chromone derivatives functioning as MAO-A and MAO-B inhibitors. The model predictions were validated against experimental measurements. Our 2D QSAR model demonstrated robustness, with a statistically significant non-cross-validated coefficient (r2 < 0.9), cross-validated correlation coefficient (q2 < 0.6), and predictive squared correlation coefficient (r2pred < 0.8). Additionally, MD simulations confirmed the stable binding of compounds 2 g and 2f with MAO-A and MAO-B, respectively, displaying substantial binding energy. The most effective pharmacophore model identified key features, such as hydrogen bond acceptors and hydrophobic interactions, that contribute significantly to inhibitory potency. This study offers valuable insight into the selection of compounds with improved selectivity for MAO inhibition.
Collapse
Affiliation(s)
- Intan Salsabila Putri
- Department of Food Science and Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, Indonesia
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Nur Farisya Shamsudin
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Maryam Aisyah Abdullah
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mochamad Nurcholis
- Department of Food Science and Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, Indonesia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Chai Xin Yu
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Sze-Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Sentot Joko Raharjo
- Academic of Pharmacy and Food Analysis of Putra Indonesia Malang, East Java, Indonesia
| | - Zalikha Ibrahim
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Deri Islami
- Faculty of Pharmacy and Health Sciences, Universitas Abdurrab, Pekanbaru, Riau, Indonesia
| | - Akm Moyeenul Huq
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Kamal Rullah
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| |
Collapse
|
2
|
Teruna HY, Rullah K, Hendra R, Utami R, Islami D, Mohd Faudzi SM, Mohd Aluwi MFF, Lam KW. Inhibitory Effect of (2 S)-Pinocembrin From Goniothalamus macrophyllus on the Prostaglandin E 2 Production in Macrophage Cell Lines: In Vitro and In Silico Studies. Adv Pharmacol Pharm Sci 2024; 2024:8811022. [PMID: 39512302 PMCID: PMC11540893 DOI: 10.1155/2024/8811022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Pinocembrin (PCB), a flavonoid known for its anti-inflammatory properties, has been approved for various clinical trial applications. To evaluate deeper into the anti-inflammatory potential of the specific enantiomer of natural PCB, we conducted the first investigation into the efficacy of the pure enantiomer (2S)-PCB in modulating inflammatory mediators induced by lipopolysaccharide (LPS) in both murine RAW 264.7 and human U937 macrophage cell lines. This particular compound was isolated from Goniothalamus macrophyllus (Annonaceae), a native plant of Indonesia. This plant has been used traditionally as an herbal medicine to alleviate inflammation. (2S)-PCB was isolated from the stem bark of G. macrophyllus by defatting with n-hexane followed by maceration with methanol. Purification was performed using several chromatographic techniques. The absolute configuration was determined using electronic circular dichroism (ECD) spectroscopy. This compound was then tested for its inhibitory activity on prostaglandin E2 (PGE2) and subjected to docking simulations. The results indicated that (2S)-PCB significantly suppressed the production of PGE2 induced by LPS in both RAW 264.7 and U937 cell lines. The docking simulations revealed that (2S)-PCB reduced PGE2 levels by suppressing mitogen-activated protein kinase (MAPK) activation through inhibiting p38 and extracellular signal-regulated kinases (ERK). These findings suggest that the compound may prevent worsening of septic shock caused by bacterial infection.
Collapse
Affiliation(s)
- Hilwan Yuda Teruna
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Riau, Pekanbaru 28293, Indonesia
| | - Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia 25200, Kuantan, Pahang, Malaysia
| | - Rudi Hendra
- Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Riau, Pekanbaru 28293, Indonesia
| | - Rahayu Utami
- Department of Pharmacy, Sekolah Tinggi Ilmu Farmasi Riau, Pekanbaru 28293, Indonesia
| | - Deri Islami
- Department of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Abdurrab, Pekanbaru 28292, Indonesia
| | - Siti Munirah Mohd Faudzi
- Natural Medicines and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | | | - Kok Wai Lam
- Drugs and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
3
|
Shamsudin NF, Leong SW, Koeberle A, Suriya U, Rungrotmongkol T, Chia SL, Taher M, Haris MS, Alshwyeh HA, Alosaimi AA, Mediani A, Ilowefah MA, Islami D, Mohd Faudzi SM, Fasihi Mohd Aluwi MF, Wai LK, Rullah K. A novel chromone-based as a potential inhibitor of ULK1 that modulates autophagy and induces apoptosis in colon cancer. Future Med Chem 2024; 16:1499-1517. [PMID: 38949858 PMCID: PMC11370956 DOI: 10.1080/17568919.2024.2363668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Aim: Chromones are promising for anticancer drug development.Methods & results: 12 chromone-based compounds were synthesized and tested against cancer cell lines. Compound 8 showed the highest cytotoxicity (LC50 3.2 μM) against colorectal cancer cells, surpassing 5-fluorouracil (LC50 4.2 μM). It suppressed colony formation, induced cell cycle arrest and triggered apoptotic cell death, confirmed by staining and apoptosis markers. Cell death was accompanied by enhanced reactive oxygen species formation and modulation of the autophagic machinery (autophagy marker light chain 3B (LC3B); adenosine monophosphate-activated protein kinase (AMPK); protein kinase B (PKB); UNC-51-like kinase (ULK)-1; and ULK2). Molecular docking and dynamic simulations revealed that compound 8 directly binds to ULK1.Conclusion: Compound 8 is a promising lead for autophagy-modulating anti-colon cancer drugs.
Collapse
Affiliation(s)
- Nur Farisya Shamsudin
- Drug Discovery & Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan25200, Pahang, Malaysia
| | - Sze-Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Andreas Koeberle
- Michael Popp Institute & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck6020, Austria
| | - Utid Suriya
- Structural & Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural & Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Suet Lin Chia
- UPM – MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang43400, Selangor, Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan25200, Pahang, Malaysia
| | - Muhammad Salahuddin Haris
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan25200, Pahang, Malaysia
| | - Hussah Abdullah Alshwyeh
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
| | - Areej A Alosaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
| | - Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi43600, Malaysia
| | | | - Deri Islami
- Faculty of Pharmacy & Health Sciences, Universitas Abdurrab, Jalan Riau Ujung, Pekanbaru28292, Riau, Indonesia
| | - Siti Munirah Mohd Faudzi
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang43400, Selangor, Malaysia
| | | | - Lam Kok Wai
- Drugs & Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur50300, Malaysia
| | - Kamal Rullah
- Drug Discovery & Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan25200, Pahang, Malaysia
| |
Collapse
|
4
|
Elzahhar PA, Orioli R, Hassan NW, Gobbi S, Belluti F, Labib HF, El-Yazbi AF, Nassra R, Belal ASF, Bisi A. Chromone-based small molecules for multistep shutdown of arachidonate pathway: Simultaneous inhibition of COX-2, 15-LOX and mPGES-1 enzymes. Eur J Med Chem 2024; 266:116138. [PMID: 38219658 DOI: 10.1016/j.ejmech.2024.116138] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
As a new approach to the management of inflammatory disorders, a series of chromone-based derivatives containing a (carbamate)hydrazone moiety was designed and synthesized. The compounds were assessed for their ability to inhibit COX-1/2, 15-LOX, and mPGES-1, as a combination that should effectively impede the arachidonate pathway. Results revealed that the benzylcarbazates (2a-c) demonstrated two-digit nanomolar COX-2 inhibitory activities with reasonable selectivity indices. They also showed appreciable 15-LOX inhibition, in comparison to quercetin. Further testing of these compounds for mPGES-1 inhibition displayed promising activities. Intriguingly, compounds 2a-c were capable of suppressing edema in the formalin-induced rat paw edema assay. They exhibited an acceptable gastrointestinal safety profile regarding ulcerogenic liabilities in gross and histopathological examinations. Additionally, upon treatment with the test compounds, the expression of the anti-inflammatory cytokine IL-10 was elevated, whereas that of TNF-α, iNOS, IL-1β, and COX-2 were downregulated in LPS-challenged RAW264.7 macrophages. Docking experiments into the three enzymes showed interesting binding profiles and affinities, further substantiating their biological activities. Their in silico physicochemical and pharmacokinetic parameters were advantageous.
Collapse
Affiliation(s)
- Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Rebecca Orioli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Nayera W Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Hala F Labib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Arab Academy of Science Technology and Maritime Transport, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Faculty of Pharmacy and the Research and Innovation Hub, Alamein International University, Alamein, 5060335, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Rasha Nassra
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Egypt
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| |
Collapse
|
5
|
Rullah K, Shamsudin NF, Koeberle A, Tham CL, Fasihi Mohd Aluwi MF, Leong SW, Jantan I, Lam KW. Flavonoid diversity and roles in the lipopolysaccharide-mediated inflammatory response of monocytes and macrophages. Future Med Chem 2024; 16:75-99. [PMID: 38205612 DOI: 10.4155/fmc-2023-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeting lipopolysaccharide (LPS)/toll-like receptor 4 signaling in mononuclear phagocytes has been explored for the treatment of inflammation and inflammation-related disorders. However, only a few key targets have been translated into clinical applications. Flavonoids, a class of ubiquitous plant secondary metabolites, possess a privileged scaffold which serves as a valuable template for designing pharmacologically active compounds directed against diseases with inflammatory components. This perspective provides a general overview of the diversity of flavonoids and their multifaceted mechanisms that interfere with LPS-induced signaling in monocytes and macrophages. Focus is placed on flavonoids targeting MD-2, IκB kinases, c-Jun N-terminal kinases, extracellular signal-regulated kinase, p38 MAPK and PI3K/Akt or modulating LPS-related gene expression.
Collapse
Affiliation(s)
- Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Nur Farisya Shamsudin
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Sze-Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Kok Wai Lam
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Islam R, Yan MP, Yen KP, Rasol NE, Meng CK, Wai LK. Synthesis and biological evaluation of chromone derivatives against triple-negative breast cancer cells. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
7
|
One-pot synthesis of 3-haloflavones from flavones using Oxone® and potassium halide as a halogenation reagent. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Rullah K, Mohd Aluwi MFF, Yamin BM, Juan JC, Wai LK. Palladium‐Catalysed Cross‐Coupling Reactions for the Synthesis of Chalcones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kamal Rullah
- Department of Pharmaceutical Chemistry Kulliyyah of PharmacyInternational Islamic University Malaysia Bandar Indera Mahkota 25200 Kuantan, Pahang Malaysia
- Drugs and Herbal Research Centre Faculty of PharmacyUniversiti Kebangsaan Malaysia Jalan Raja Muda Abdul Aziz 50300 Kuala Lumpur Malaysia
- Nanotechnology and Catalysis Research Centre (NANOCAT)University of Malaya 50603 Kuala Lumpur Malaysia
| | | | - Bohari M. Yamin
- School of Chemical Sciences & Food TechnologyUniversiti Kebangsaan Malaysia 43600 Bangi, Selangor Malaysia
| | - Joon Ching Juan
- Nanotechnology and Catalysis Research Centre (NANOCAT)University of Malaya 50603 Kuala Lumpur Malaysia
| | - Lam Kok Wai
- Drugs and Herbal Research Centre Faculty of PharmacyUniversiti Kebangsaan Malaysia Jalan Raja Muda Abdul Aziz 50300 Kuala Lumpur Malaysia
| |
Collapse
|
9
|
Modulatory effect of a new benzopyran derivative via COX-2 blocking and down regulation of NF-κB against γ-radiation induced- intestinal inflammation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 192:90-96. [PMID: 30710830 DOI: 10.1016/j.jphotobiol.2019.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/31/2018] [Accepted: 01/14/2019] [Indexed: 11/21/2022]
Abstract
Radiotherapy is considered as a primary modality for cancer treatment which accompanied by several side effects. Protection of normal tissues from radiation effects is one of the most significant concerns for researchers. Although many compounds acting as radio protectors, only two compounds were licensed clinically. Cyclooxygenase-2 (COX-2), as an inflammatory mediator is associated with ROS production with a NF-κB gene up regulation dependent manner in normal tissues. To that extend, his study was designed to target COX-2 and NF-κB by a newly synthesized benzopyran-4-one or chromone derivative; (2E)-2-((4-oxo-4H-chromen-3-yl) methylene amino-4- nitrobenzoic acid (Ch). Exposure of mice to IRR significantly induced intestinal inflammation via overexpression of COX-2 and NF-κB which is accompanied by an increase in the levels of MDA and iNOS in tissue homogenate and in the production of TNF-α and IL-6 as inflammatory signs. Moreover, the apoptotic effect of IRR was manifested by obvious elevation in caspase-3. Interapretonial injection of Ch significantly controls the inflammatory response by blocking the COX-2 and decrease the expression NF-κB which subsequently decreases other inflammatory parameters. Thus Ch compound might be a promising nonsteroidal anti-inflammatory drug (NSAID) against radiation-induced inflammation with a specific mode of COX-2 inhibition. Further researches are needed to elucidate its molecular mechanism and its combination with radiotherapy as a protector.
Collapse
|
10
|
Zulfakar MH, Chan LM, Rehman K, Wai LK, Heard CM. Coenzyme Q10-Loaded Fish Oil-Based Bigel System: Probing the Delivery Across Porcine Skin and Possible Interaction with Fish Oil Fatty Acids. AAPS PharmSciTech 2018; 19:1116-1123. [PMID: 29181705 DOI: 10.1208/s12249-017-0923-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/13/2017] [Indexed: 01/25/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is a vitamin-like oil-soluble molecule that has anti-oxidant and anti-ageing effects. To determine the most optimal CoQ10 delivery vehicle, CoQ10 was solubilised in both water and fish oil, and formulated into hydrogel, oleogel and bigel. Permeability of CoQ10 from each formulation across porcine ear skin was then evaluated. Furthermore, the effects of the omega-3 fatty eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from fish oil on skin permeation were investigated by means of nuclear magnetic resonance (NMR) and computerised molecular modelling docking experiments. The highest drug permeation was achieved with the bigel formulation that proved to be the most effective vehicle in delivering CoQ10 across the skin membrane due to a combination of its adhesive, viscous and lipophilic properties. Furthermore, the interactions between CoQ10 and fatty acids revealed by NMR and molecular modelling experiments likely accounted for skin permeability of CoQ10. NMR data showed dose-dependent changes in proton chemical shifts in EPA and DHA. Molecular modelling revealed complex formation and large binding energies between fatty acids and CoQ10. This study advances the knowledge about bigels as drug delivery vehicles and highlights the use of NMR and molecular docking studies for the prediction of the influence of drug-excipient relationships at the molecular level.
Collapse
|
11
|
Carullo G, Galligano F, Aiello F. Structure-activity relationships for the synthesis of selective cyclooxygenase 2 inhibitors: an overview (2009-2016). MEDCHEMCOMM 2017; 8:492-500. [PMID: 30108767 PMCID: PMC6072045 DOI: 10.1039/c6md00569a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
Most drugs used to treat pain and inflammation act through inhibition of the enzymes prostaglandin G/H synthase, commonly known as cyclooxygenase (COX). Among these, the simultaneous inhibition of cyclooxygenase 1 (COX-1) would explain the unwanted side effects in the gastrointestinal tract and many adverse cardiovascular effects, such as high blood pressure, myocardial infarction and thrombosis. These side effects led in time to the development of NSAIDs that behave as selective COX-2 inhibitors. This manuscript highlights the structure-activity relationships which characterize the chemical scaffolds endowed with selective COX-2 inhibition. Additionally, the role of COX-2 inhibitors in the pain phenomenon and cancer is discussed.
Collapse
Affiliation(s)
- G Carullo
- Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , 87036 Rende , Italy .
| | - F Galligano
- Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , 87036 Rende , Italy .
| | - F Aiello
- Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , 87036 Rende , Italy .
| |
Collapse
|
12
|
Liu C, Li X. Oxygen-Promoted Suzuki-Miyaura Reaction for Efficient Construction of Biaryls. CHEM REC 2015; 16:84-97. [DOI: 10.1002/tcr.201500218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Chun Liu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Linggong Road 2 Dalian 116024 P. R. China
| | - Xinmin Li
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Linggong Road 2 Dalian 116024 P. R. China
| |
Collapse
|
13
|
Probing the effects of fish oil on the delivery and inflammation-inducing potential of imiquimod. Int J Pharm 2015; 490:131-41. [DOI: 10.1016/j.ijpharm.2015.05.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 05/17/2015] [Indexed: 02/05/2023]
|