1
|
Villa-Reyna AL, Perez-Velazquez M, González-Félix ML, Gálvez-Ruiz JC, Gonzalez-Mosquera DM, Valencia D, Ballesteros-Monreal MG, Aguilar-Martínez M, Leyva-Peralta MA. The Structure-Antiproliferative Activity Relationship of Pyridine Derivatives. Int J Mol Sci 2024; 25:7640. [PMID: 39062883 PMCID: PMC11276865 DOI: 10.3390/ijms25147640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pyridine, a compound with a heterocyclic structure, is a key player in medicinal chemistry and drug design. It is widely used as a framework for the design of biologically active molecules and is the second most common heterocycle in FDA-approved drugs. Pyridine is known for its diverse biological activity, including antituberculosis, antitumor, anticoagulant, antiviral, antimalarial, antileishmania, anti-inflammatory, anti-Alzheimer's, antitrypanosomal, antimalarial, vasodilatory, antioxidant, antimicrobial, and antiproliferative effects. This review, spanning from 2022 to 2012, involved the meticulous identification of pyridine derivatives with antiproliferative activity, as indicated by their minimum inhibitory concentration values (IC50) against various cancerous cell lines. The aim was to determine the most favorable structural characteristics for their antiproliferative activity. Using computer programs, we constructed and calculated the molecular descriptors and analyzed the electrostatic potential maps of the selected pyridine derivatives. The study found that the presence and positions of the -OMe, -OH, -C=O, and NH2 groups in the pyridine derivatives enhanced their antiproliferative activity over the cancerous cellular lines studied. Conversely, pyridine derivatives with halogen atoms or bulky groups in their structures exhibited lower antiproliferative activity.
Collapse
Affiliation(s)
- Ana-Laura Villa-Reyna
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Martin Perez-Velazquez
- Departamento de Investigaciones Científicas y Tecnológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico; (M.P.-V.); (M.L.G.-F.)
| | - Mayra Lizett González-Félix
- Departamento de Investigaciones Científicas y Tecnológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico; (M.P.-V.); (M.L.G.-F.)
| | - Juan-Carlos Gálvez-Ruiz
- Departamento de Ciencias Químico Biológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico;
| | - Dulce María Gonzalez-Mosquera
- Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central Marta Abreu Las Villitas, Santa Clara, Cuba;
| | - Dora Valencia
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Manuel G. Ballesteros-Monreal
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Milagros Aguilar-Martínez
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| | - Mario-Alberto Leyva-Peralta
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico; (A.-L.V.-R.); (D.V.); (M.G.B.-M.)
| |
Collapse
|
2
|
Maraii D, Dammak M. Synthesis, structure, optical and thermal analysis of the new compound of the new compound organo-metallic (C5H6N)2TeCl6. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Yang X, Li C, Zhang F, Qi C. An efficient domino strategy for synthesis of 3-substituted 4-oxo-4,5-dihydro-1H-pyrrolo[3,2-c]pyridine derivatives in water. Mol Divers 2021; 26:1663-1674. [PMID: 34414516 DOI: 10.1007/s11030-021-10294-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
A strategy for catalyst-free domino reaction of 4-aminopyridin-2(1H)-ones, arylglyoxal hydrates and different 1,3-dicarbonyl compounds in water has been established. The mild and efficient procedure afforded pyrrolo[3,2-c]pyridine derivatives with 76-94% yields after simple crystallization. The present procedure shows promising characteristics, such as readily available starting materials, the use of water as reaction media, simple and efficient one-pot operation, and avoiding the need for any hazardous or expensive catalysts.
Collapse
Affiliation(s)
- Xiaopeng Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Chunmei Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China.,College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Furen Zhang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
4
|
Khan E. Pyridine Derivatives as Biologically Active Precursors; Organics and Selected Coordination Complexes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100332] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ezzat Khan
- Department of Chemistry University of Malakand, Chakdara 18800, Lower Dir Khyber Pakhtunkhwa Pakistan
- Department of Chemistry, College of Science University of Bahrain Sakhir 32038 Bahrain
| |
Collapse
|
5
|
Garai S, Kulkarni PM, Schaffer PC, Leo LM, Brandt AL, Zagzoog A, Black T, Lin X, Hurst DP, Janero DR, Abood ME, Zimmowitch A, Straiker A, Pertwee RG, Kelly M, Szczesniak AM, Denovan-Wright EM, Mackie K, Hohmann AG, Reggio PH, Laprairie RB, Thakur GA. Application of Fluorine- and Nitrogen-Walk Approaches: Defining the Structural and Functional Diversity of 2-Phenylindole Class of Cannabinoid 1 Receptor Positive Allosteric Modulators. J Med Chem 2020; 63:542-568. [PMID: 31756109 DOI: 10.1021/acs.jmedchem.9b01142] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cannabinoid 1 receptor (CB1R) allosteric ligands hold a far-reaching therapeutic promise. We report the application of fluoro- and nitrogen-walk approaches to enhance the drug-like properties of GAT211, a prototype CB1R allosteric agonist-positive allosteric modulator (ago-PAM). Several analogs exhibited improved functional potency (cAMP, β-arrestin 2), metabolic stability, and aqueous solubility. Two key analogs, GAT591 (6r) and GAT593 (6s), exhibited augmented allosteric-agonist and PAM activities in neuronal cultures, improved metabolic stability, and enhanced orthosteric agonist binding (CP55,940). Both analogs also exhibited good analgesic potency in the CFA inflammatory-pain model with longer duration of action over GAT211 while being devoid of adverse cannabimimetic effects. Another analog, GAT592 (9j), exhibited moderate ago-PAM potency and improved aqueous solubility with therapeutic reduction of intraocular pressure in murine glaucoma models. The SAR findings and the enhanced allosteric activity in this class of allosteric modulators were accounted for in our recently developed computational model for CB1R allosteric activation and positive allosteric modulation.
Collapse
Affiliation(s)
- Sumanta Garai
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Pushkar M Kulkarni
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Peter C Schaffer
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Luciana M Leo
- Center for Substance Abuse Research, Lewis Katz School of Medicine , Temple University , Philadelphia , Pennsylvania 19140 , United States
| | - Asher L Brandt
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Tallan Black
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Xiaoyan Lin
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Dow P Hurst
- Center for Drug Discovery , University of North Carolina Greensboro , Greensboro , North Carolina 27402 , United States
| | - David R Janero
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Department of Chemistry and Chemical Biology, College of Science, and Health Sciences Entrepreneurs , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine , Temple University , Philadelphia , Pennsylvania 19140 , United States
| | - Anaelle Zimmowitch
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Alex Straiker
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences , University of Aberdeen , Aberdeen AB25 2ZD , Scotland, U.K
| | - Melanie Kelly
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Anna-Maria Szczesniak
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Eileen M Denovan-Wright
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Ken Mackie
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Andrea G Hohmann
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Patricia H Reggio
- Center for Drug Discovery , University of North Carolina Greensboro , Greensboro , North Carolina 27402 , United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada.,Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
6
|
Balfour MN, Zukerman-Schpector J, Rodriguez MJD, Reis JS, Esteves CHA, Stefani HA. Combination of Sonogashira coupling and 5- endo- dig cyclization for the synthesis of 2,6-disubstituted-5-azaindoles. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1545032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Michael N. Balfour
- Faculdade de Ciências Farmacêuticas, Departamento de Farmácia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Julio Zukerman-Schpector
- Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Maria José Dávila Rodriguez
- Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Joel Savi Reis
- Faculdade de Ciências Farmacêuticas, Departamento de Farmácia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carlos Henrique A. Esteves
- Faculdade de Ciências Farmacêuticas, Departamento de Farmácia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Hélio A. Stefani
- Faculdade de Ciências Farmacêuticas, Departamento de Farmácia, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Synthesis, molecular docking, antimycobacterial and antimicrobial evaluation of new pyrrolo[3,2-c]pyridine Mannich bases. Eur J Med Chem 2017; 131:275-288. [PMID: 28340368 DOI: 10.1016/j.ejmech.2017.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/05/2017] [Accepted: 03/10/2017] [Indexed: 11/23/2022]
Abstract
In this report, we describe the synthesis and biological evaluation of a new series of pyrrolo[3,2-c]pyridine Mannich bases (7a-v). The Mannich bases were obtained in good yields by one-pot three component condensation of pyrrolo[3,2-c]pyridine scaffold (6a-c) with secondary amines and excess of formaldehyde solution in AcOH. The chemical structures of the compounds were characterized by 1H NMR, 13C NMR, LC/MS and elemental analysis. Single crystal X-ray diffraction has been recorded for compound 7k ([C23H29ClN4]+2, H2O). The in vitro antimicrobial activities of the compounds were evaluated against various bacterial and fungal strains using Agar diffusion method and Broth micro dilution method. Compounds 7e, 7f, 7r, 7t, and 7u were showed good Gram-positive antibacterial activity against S. aureus, B. flexus, C. sporogenes and S. mutans. Furthermore, in vitro antimycobacterial activity was evaluated against Mycobacterium tuberculosis H37Rv (ATCC 27294) using MABA. Compounds 7r, 7t, and 7u were showed good antitubercular activity against Mtb (MIC ≥6.25 μg/mL). Among the tested compounds, 1-((4-chloro-2-(cyclohexylmethyl)-1H-pyrrolo[3,2-c]pyridin-3-yl)methyl)piperidine-3-carboxamide (7t) was showed excellent antimycobacterial activity against Mtb (MIC <0.78 μg/mL) and low cytotoxicity against the HEK-293T cell line (SI >>25). Molecular docking of the active compounds against glutamate racemase (MurI) and Mtb glutamine synthetase were explained the structure-activity observed in vitro.
Collapse
|
8
|
Balfour MN, Franco CH, Moraes CB, Freitas-Junior LH, Stefani HA. Synthesis and trypanocidal activity of a library of 4-substituted 2-(1H-pyrrolo[3,2-c]pyridin-2-yl)propan-2-ols. Eur J Med Chem 2017; 128:202-212. [PMID: 28189084 DOI: 10.1016/j.ejmech.2017.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
A library of 16 4-substituted 2-(1H-pyrrolo[3,2-c]pyridin-2-yl)propan-2-ols 17-32 has been synthesized for use in biological testing against Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. The 4-substituted 2-(1H-pyrrolo[3,2-c]pyridin-2-yl)propan-2-ols 17-32 were subjected to biological testing to evaluate their efficacy against intracellular Trypanosoma cruzi (Y strain) amastigotes infecting U2OS human cells, with benznidazole as a reference compound. The assay was performed in duplicate (two independent experiments) and submitted to High Content Analysis (HCA) for determination of trypanocidal activity. Three of the tested compounds presented relatively high trypanocidal activity (19, 22 and 29), however severe host cell toxicity was observed concomitantly. Chemical optimization of the highly active compounds and the synthesis of more compounds for biological testing against Trypanosoma cruzi will be required to improve selectivity and so that a structure-activity relationship can be generated to provide a more insightful analysis of both chemical and biological aspects.
Collapse
Affiliation(s)
- Michael N Balfour
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Caio H Franco
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | - Carolina B Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | - Lucio H Freitas-Junior
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil.
| | - Hélio A Stefani
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Desai NC, Patel BY, Dave BP. Synthesis and antimicrobial activity of novel quinoline derivatives bearing pyrazoline and pyridine analogues. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1732-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Khan SA, Asiri AM, Al-Thaqafy SH. Optical properties and fluorescence quenching of biologically active ethyl 4-(4-N,N-dimethylamino phenyl)-2-methyl-5-oxo-4,5-dihydro-1H-indeno[1,2-b]pyridine-3-carboxylate (DDPC) dye as a probe to determine CMC of surfactants. RSC Adv 2016. [DOI: 10.1039/c6ra02814d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
4-(4-N,N-Dimethylamino phenyl)-2-methyl-5-oxo-4,5-dihydro-1H-indeno[1,2-b]pyridine-3-carboxylate (DDPC) was prepared via the multi-component reaction of indane-1,3-dione with 4-(dimethylamino)benzaldehyde, ethyl acetoacetate and ammonium acetate.
Collapse
Affiliation(s)
- Salman A. Khan
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Saad H. Al-Thaqafy
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|