1
|
da Costa APL, Cardoso FJB, Molfetta FAD. An in silico molecular modeling approach of halolactone derivatives as potential inhibitors for human immunodeficiency virus type-1 reverse transcriptase enzyme. J Biomol Struct Dyn 2023; 41:1715-1729. [PMID: 34996334 DOI: 10.1080/07391102.2021.2024256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Acquired Immune Deficiency Syndrome (AIDS) is an infectious disease caused by Human Immunodeficiency Virus (HIV) infection and its replication requires the Reverse Transcriptase (RT) enzyme. RT plays a key role in the HIV life cycle, making it one of the most important targets for designing new drugs. Thus, in order to increase therapeutic options against AIDS, halolactone derivatives (D-halolactone) that have been showed as potential non-nucleoside inhibitors of the RT enzyme were studied. In the present work, a series of D-halolactone were investigated by molecular modeling studies, combining Three-dimensional Quantitative Structure-Activity Relationship (3 D-QSAR), molecular docking and Molecular Dynamics (MD) techniques, to understand the molecular characteristics that promote biological activity. The internal and external validation parameters indicated that the 3 D-QSAR model has good predictive capacity and statistical significance. Contour maps provided useful information on the structural characteristics of compounds for anti-HIV-1 activity. The docking results showed that D-halolactone present good complementarity by the RT allosteric site. In MD simulations it was observed that the formation of enzyme-ligand complexes were favorable, and from the free energy decomposition it was found that Leu100, Val106, Tyr181, Try188, and Trp229 are key residues for stabilization in the enzymatic site. Thus, the results showed that the proposed models can be used to design promising HIV-1 RT inhibitors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ana Paula Lima da Costa
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Fábio José Bonfim Cardoso
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Fábio Alberto de Molfetta
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
2
|
Singh A, Kumar V, Mishra A, Singh VK. Targeting the HIV-1 Tat and Human Tat Protein Complex through Natural
Products: An In Silico Docking and Molecular Dynamics Simulation
Approach. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220330122542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Tat protein is considered essential for substantial HIV-1 replication, and is also
required to break HIV-1 latency, resulting in productive HIV replication. The multifaceted regulatory role
of HIV Tat and the fact that it is expressed in the early stages of HIV infection justify its potential as an
anti-HIV drug target.
Objective:
The present study was undertaken with the aim to target HIV-1 Tat protein with natural compounds
which could help in identifying potential inhibitors against HIV-1 Tat.
Methods:
In this study, we compared the binding of Tat protein and Human P-TEFb Tat protein complex
(TPC) with phyto-steroids and terpenes to evaluate their potential for HIV-1 treatment. The docking ability
of plant products with HIV-1 Tat and TPC was studied with respect to dissociation constant, geometric
shape complementary score, approximate interface area, and binding energy using Patch dock and
YASARA. Molecular dynamics simulation was set up to investigate the interactions of the natural compounds
with Tat protein and human tat protein complex (TPC).
Results:
The binding energy and dissociation constant of Diosgenin, Catharanthine and Ginkgolide A
with Tat and TPC were comparable to antiretroviral drugs, Maraviroc and Emtricitabine. The natural
products, Diosgenin, Ginkgolide A and Catharanthine, showed the highest binding energy and were stable
with Tat protein and TPC in the entire MD simulation run.
Conclusion:
The natural products, Diosgenin, Ginkgolide A and Catharanthine, showed highest binding
energy and were stable with Tat protein and TPC in the entire MD simulation run. The binding energy
and dissociation constant of Diosgenin, Catharanthine and Ginkgolide A with Tat and TPC were comparable
to antiretroviral drugs, Maraviroc and Emtricitabine.
Collapse
Affiliation(s)
- Anchal Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Vipin Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ayushi Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Vinay Kumar Singh
- Centre for
Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| |
Collapse
|
3
|
Bektaş E, Sahin H, Beldüz AO, Güler Hİ. HIV-1-RT inhibition activity of Satureja spicigera (C.KOCH) BOISS. Aqueous extract and docking studies of phenolic compounds identified by RP-HPLC-DAD. J Food Biochem 2021; 46:e13921. [PMID: 34477237 DOI: 10.1111/jfbc.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022]
Abstract
AIDS is a global disease caused by HIV, affecting millions of people and causing death. The current limitations of antiretroviral therapy used in the therapy of HIV/AIDS have led to the need to search for new and effective drugs from natural products, especially plants. Herewith, using the present study, the detection of HIV-1-RT inhibition of aqueous extract of Satureja spicigera (C.KOCH) BOISS. was performed for the first time. Besides, total phenolic content (TPC), analysis of phenolic constituents by RP-HPLC-DAD and antioxidant capacity by DPPH and Ferric reducing antioxidant power (FRAP) methods were determined for the first time. In addition, molecular docking studies were carried out between HIV-1-RT and phenolic substances, the presence of which was determined in the aqueous extract, for the determination of the phenolics that may be responsible for HIV-1-RT activity. HIV-1-RT inhibition was defined as IC50 : 22.83 μg/ml. Benzoic acid, vanillin, rutin, and chlorogenic acid were present as main phenolics in quantities of 621.96, 505.87, 349.33, and 323.23 µg phenolic/g extract, respectively. Further, TPC, DPPH, and FRAP were calculated as in the order of 151.69 mg GAE/g extract, 23.77 µg/ml, and 445.7 µmol TE/g extract. Chlorogenic acid (-8.48 kcal/mol) was found to be the most effective ligand in docking studies, with a value close to positive standard nevirapine (-9.35 kcal/mol). Hereby, although the aqueous extract of S. spicigera can be used as a natural antioxidant, the crude extract or its phenolics have the potential to be used in the treatment of AIDS due to its high HIV-1-RT activity. PRACTICAL APPLICATIONS: In this study, anti-HIV-1-RT and antioxidant activity and total phenolic content of Satureja spicigera aqueous extract were determined. In addition, HPLC analysis of some phytochemicals and the activities of these phytochemicals against HIV-1-RT enzyme was determined by molecular docking studies. The results showed that the aqueous extract of S. spicigera and some of the phytochemicals it contains have the potential to be used as a natural product against HIV infection or in the treatment of AIDS.
Collapse
Affiliation(s)
- Ersan Bektaş
- Espiye Vocational School, Giresun University, Giresun, Turkey
| | - Huseyin Sahin
- Espiye Vocational School, Giresun University, Giresun, Turkey
| | - Ali Osman Beldüz
- Faculty of Science, Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Halil İbrahim Güler
- Faculty of Science, Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
4
|
|
5
|
Goud NS, Soukya PSL, Ghouse M, Komal D, Alvala R, Alvala M. Human Galectin-1 and Its Inhibitors: Privileged Target for Cancer and HIV. Mini Rev Med Chem 2019; 19:1369-1378. [PMID: 30834831 DOI: 10.2174/1389557519666190304120821] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/07/2018] [Accepted: 02/22/2019] [Indexed: 01/18/2023]
Abstract
Galectin 1(Gal-1), a β-galactoside binding mammalian lectin of 14KDa, is implicated in many signalling pathways, immune responses associated with cancer progression and immune disorders. Inhibition of human Gal-1 has been regarded as one of the potential therapeutic approaches for the treatment of cancer, as it plays a major role in tumour development and metastasis by modulating various biological functions viz. apoptosis, angiogenesis, migration, cell immune escape. Gal-1 is considered as a biomarker in diagnosis, prognosis and treatment condition. The overexpression of Gal-1 is well established and seen in many types of cancer progression like osteosarcoma, breast, lung, prostate, melanoma, etc. Gal-1 greatly accelerates the binding kinetics of HIV-1 to susceptible cells, leading to faster viral entry and a more robust viral replication by specific binding of CD4 cells. Hence, the Gal-1 is considered a promising molecular target for the development of new therapeutic drugs for cancer and HIV. The present review laid emphasis on structural insights and functional role of Gal-1 in the disease, current Gal-1 inhibitors and future prospects in the design of specific Gal-1 inhibitors.
Collapse
Affiliation(s)
- Narella Sridhar Goud
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - P S Lakshmi Soukya
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - Mahammad Ghouse
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - Daipule Komal
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - Ravi Alvala
- G. Pulla Reddy College of pharmacy, Hyderabad, 500028, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| |
Collapse
|
6
|
Wang Y, Chang J, Wang J, Zhong P, Zhang Y, Lai CC, He Y. 3D-QSAR Studies of S-DABO Derivatives as Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180810112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
S-dihydro-alkyloxy-benzyl-oxopyrimidines (S-DABOs) as non-nucleoside
reverse transcriptase inhibitors have received considerable attention during the last decade due to
their high potency against HIV-1.
Methods:
In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) of
a series of 38 S-DABO analogues developed in our lab was studied using Comparative Molecular
Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). The
Docking/MMFF94s computational protocol based on the co-crystallized complex (PDB ID: 1RT2)
was used to determine the most probable binding mode and to obtain reliable conformations for
molecular alignment. Statistically significant CoMFA (q2=0.766 and r2=0.949) and CoMSIA
(q2=0.827 and r2=0.974) models were generated using the training set of 30 compounds on the basis
of hybrid docking-based and ligand-based alignment.
Results:
The predictive ability of CoMFA and CoMSIA models was further validated using a test
set of eight compounds with predictive r2
pred values of 0.843 and 0.723, respectively.
Conclusion:
The information obtained from the 3D contour maps can be used in designing new SDABO
derivatives with improved HIV-1 inhibitory activity.
Collapse
Affiliation(s)
- Yueping Wang
- Department of Applied Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jie Chang
- Department of Applied Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jiangyuan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Ministry of Education), School of Chemical Science and Technology, Yunnan University, Kunming Yunnan, 650091, China
| | - Peng Zhong
- Department of Applied Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yufang Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Ministry of Education), School of Chemical Science and Technology, Yunnan University, Kunming Yunnan, 650091, China
| | - Christopher Cong Lai
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Yanping He
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Ministry of Education), School of Chemical Science and Technology, Yunnan University, Kunming Yunnan, 650091, China
| |
Collapse
|
7
|
Costa G, Rocca R, Corona A, Grandi N, Moraca F, Romeo I, Talarico C, Gagliardi MG, Ambrosio FA, Ortuso F, Alcaro S, Distinto S, Maccioni E, Tramontano E, Artese A. Novel natural non-nucleoside inhibitors of HIV-1 reverse transcriptase identified by shape- and structure-based virtual screening techniques. Eur J Med Chem 2018; 161:1-10. [PMID: 30342421 DOI: 10.1016/j.ejmech.2018.10.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
Abstract
In this work we report a parallel application of both docking- and shape-based virtual screening (VS) methods, followed by Molecular Dynamics simulations (MDs), for discovering new compounds able to inhibit the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) RNA-dependent DNA polymerase activity. Specifically, we screened more than 143000 natural compounds commercially available in the ZINC database against the best five RT crystallographic models, taking into account the five approved NNRTIs as query compounds. As a result, 20 hit molecules were selected and tested on biochemical assays for the inhibition of the RNA dependent DNA polymerase RT function and, among them, an indoline pyrrolidine (hit1), an indonyl piperazine (hit2) and an indolyl indolinone (hit3) derivatives were identified as novel non-nucleoside RT inhibitors in the low micromolar range.
Collapse
Affiliation(s)
- Giosuè Costa
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Angela Corona
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Cagliari, Italy
| | - Nicole Grandi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Cagliari, Italy
| | - Federica Moraca
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Department of Chemical Sciences, University of Napoli Federico II, Via Cinthia 4, I-80126, Napoli, Italy.
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Carmine Talarico
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Maria Giovanna Gagliardi
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Simona Distinto
- Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Elias Maccioni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Enzo Tramontano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Cagliari, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| |
Collapse
|
8
|
Mohseni SS, Nasri F, Davari K, Mirzaie S, Moradzadegan A, Abdi F, Farzaneh F. Identification of novel inhibitor against endonuclease subunit of Influenza pH1N1 polymerase: A combined molecular docking, molecular dynamics, MMPBSA, QMMM and ADME studies to combat influenza A viruses. Comput Biol Chem 2018; 77:279-290. [PMID: 30396155 DOI: 10.1016/j.compbiolchem.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 01/28/2023]
Abstract
The influenza H1N1 virus is the causative agent of the flu pandemic in the world. Due to the shortage of effective means of control, it is remained the serious threats to public and avian health. To battle the surge of viral outbreaks, new treatments are crucially needed. The viral RNA polymerase, which is responsible for transcription and replication of the RNA genome, is comprised of subunits PA, PB1 and PB2. PA has endonuclease activity and is a well known target for inhibitor and drug design. In the current study, we employed molecular docking, molecular dynamics (MD), MMPBSA, QMMM and ADME studies to find and propose an inhibitor among 11,873 structures against PA. Our molecular docking, MD, MMPBSA and QMMM studies showed that ZINC15340668 has ideal characteristics as a potent PA inhibitor, and can be used in experimental phase and further development. Also, ADME prediction demonstrated that all physico-chemical parameters are within the acceptable range defined for human use. Molecular mechanism based study revealed that upon inhibitor binding; the flexibility of PA backbone is increased. This observation demonstrates the plasticity of PA active site, and it should be noticed in drug design against PA Influenza A viruses. In the final phase of the study, the efficiency of our proposed hit was tested computationally against mutant drug resistant I38T_PA. Our results exhibited that the hit inhibits the I38T_PA in different manner with high potency.
Collapse
Affiliation(s)
- Seyed Sajad Mohseni
- Department of Microbiology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Fariborz Nasri
- Department of Chemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Kambiz Davari
- Department of Microbiology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Sako Mirzaie
- Department of Biochemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Atousa Moradzadegan
- Department of Experimental Sciences, Dezful Branch, Islamic Azad University, Dezful, Iran.
| | - Fatemeh Abdi
- Department of Biochemsitry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farhad Farzaneh
- Department of Biochemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|