1
|
First synthesis of furostans bearing a 1, 3-dioxane ring at C-26. XRD, Hirshfeld surfaces analysis, DFT studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Yadav P, Pandey SK, Shama P, Kumar S, Banerjee M, Sethi A. Experimental and theoretical investigation of synthesized pregnenolone derivatives via palladium catalyzed cross coupling reactions, their anticancer activity against lung cancer cells. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
3
|
Gao L, Mao Q, Luo S, Cao L, Xie X, Yang Y, Deng Y, Wei Z. Experimental and theoretical insights into kinetics and mechanisms of hydroxyl and sulfate radicals-mediated degradation of sulfamethoxazole: Similarities and differences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113795. [PMID: 31918128 DOI: 10.1016/j.envpol.2019.113795] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/17/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Hydroxyl radical (•OH)- and sulfate radical ()-based advanced oxidation technologies (AOTs) have been proven an effective method to remove antibiotics in wastewater treatment plants (WWTPs). This study aims to gain insights into kinetics and mechanisms of neutral sulfamethoxazole (SMX) degradation, a representative antibiotic, by •OH and using an experimental and theoretical approach. First, the second-order rate constants (k) of SMX with •OH and were determined to be (7.27 ± 0.43) × 109 and (2.98 ± 0.32) × 109 M-1 s-1 in UV/H2O2 and UV/persulfate (UV/PS) systems, respectively. The following theoretical calculations at the M06-2X level of theory revealed that addition of radicals to the benzene ring is the most favorable first-step reaction for both •OH and , but that exhibits higher energy barriers and selectivity than •OH due to steric hindrance. We further analyzed subsequent reactions and, interestingly, our findings closely corroborated HOMO/LUMO distributions of SMX to the oxidation pathways. Finally, the estimation of energy consumption for UV alone, •OH-, and -mediated oxidation processes was compared. These comparative results, for the first time, provide insights into the similarities and differences of degradation of SMX by •OH/ at the molecular level and can help improve antibiotics removal using radical based AOTs in WWTPs.
Collapse
Affiliation(s)
- Lingwei Gao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Qiming Mao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Linying Cao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xiande Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC), Department of Engineering, Aarhus University, Hangøvej 2, DK-8200, Aarhus N, Denmark.
| |
Collapse
|
4
|
Synthesis of novel steroids using Mizoroki-Heck reaction, their spectroscopic analysis, anticancer activity against cervical cancer and DFT studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Sethi A, Singh RP, Pathak R, Shukla D, Amandeep, Yadav P. One pot synthesis of novel pregnane-sulphur prodrugs, spectroscopic investigation, conformational analysis, chemical reactivity, Fukui function and their mathematical model. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Luo S, Gao L, Wei Z, Spinney R, Dionysiou DD, Hu WP, Chai L, Xiao R. Kinetic and mechanistic aspects of hydroxyl radical‒mediated degradation of naproxen and reaction intermediates. WATER RESEARCH 2018; 137:233-241. [PMID: 29550726 DOI: 10.1016/j.watres.2018.03.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 05/07/2023]
Abstract
Hydroxyl radical (•OH) based advanced oxidation technologies (AOTs) are effective for removing non‒steroidal anti-inflammatory drugs (NSAIDs) during water treatment. In this study, we systematically investigated the degradation kinetics of naproxen (NAP), a representative NSAID, with a combination of experimental and theoretical approaches. The second-order rate constant (k) of •OH oxidation of NAP was measured to be (4.32 ± 0.04) × 109 M-1 s-1, which was in a reasonable agreement with transition state theory calculated k value (1.08 × 109 M-1 s-1) at SMD/M05-2X/6-311++G**//M05-2X/6-31+G** level of theory. The calculated result revealed that the dominant reaction intermediate is 2‒(5‒hydroxy‒6‒methoxynaphthalen‒2‒yl)propanoic acid (HMNPA) formed via radical adduct formation pathway, in which •OH addition onto the ortho site of the methoxy-substituted benzene ring is the most favorable pathway for the NAP oxidation. We further investigated the subsequent •OH oxidation of HMNPA via a kinetic modelling technique. The k value of the reaction of HMNPA and •OH was determined to be 2.22 × 109 M-1 s-1, exhibiting a similar reactivity to the parent NAP. This is the first study on the kinetic and mechanistic aspects of NAP and its reaction intermediates. The current results are valuable in future study evaluating and extending the application of •OH based AOTs to degrade NAP and other NSAIDs of concern in water treatment plants.
Collapse
Affiliation(s)
- Shuang Luo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Lingwei Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zongsu Wei
- Laboratory for the Chemistry of Construction Materials (LC(2)), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Wei-Ping Hu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia‒Yi, 62102, Taiwan
| | - Liyuan Chai
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| |
Collapse
|