1
|
Ding Y, Yu S, Ren M, Lu J, Fu Q, Zhang Z, Wang Q, Bai J, Hao N, Yang L, Wei S, Yi D, Wei J. Redox-neutral and metal-free synthesis of 3-(arylmethyl)chroman-4-ones via visible-light-driven alkene acylarylation. Front Chem 2022; 10:1059792. [PMID: 36385990 PMCID: PMC9660241 DOI: 10.3389/fchem.2022.1059792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2023] Open
Abstract
A metal- and aldehyde-free visible-light-driven photoredox-neutral alkene acylarylation with readily available cyanoarenes is described. A variety of 3-(arylmethyl)chroman-4-ones (i.e., homoisoflavonoids) and analogs are efficiently synthesized with good functional group tolerance. This mild protocol relies on a phosphoranyl radical-mediated acyl radical-initiated cyclization and selective radical-radical coupling sequence, and is also further highlighted by subsequent derivatization to chromone and 2H-chromene as well as its application in the three-component alkene acylarylation.
Collapse
Affiliation(s)
- Yan Ding
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shengjiao Yu
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Man Ren
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ji Lu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qiang Fu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhijie Zhang
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qin Wang
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Bai
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Na Hao
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lin Yang
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siping Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dong Yi
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Khan D, Parveen I. Chroman‐4‐one‐Based Amino Bidentate Ligand: An Efficient Ligand for Suzuki‐Miyaura and Mizoroki‐Heck Coupling Reactions in Aqueous Medium. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Danish Khan
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247 667 India
| | - Iram Parveen
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247 667 India
| |
Collapse
|
3
|
Xu TC, Lu YH, Wang JF, Song ZQ, Hou YG, Liu SS, Liu CS, Wu SH. Bioactive Secondary Metabolites of the Genus Diaporthe and Anamorph Phomopsis from Terrestrial and Marine Habitats and Endophytes: 2010-2019. Microorganisms 2021; 9:217. [PMID: 33494367 PMCID: PMC7912663 DOI: 10.3390/microorganisms9020217] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The genus Diaporthe and its anamorph Phomopsis are distributed worldwide in many ecosystems. They are regarded as potential sources for producing diverse bioactive metabolites. Most species are attributed to plant pathogens, non-pathogenic endophytes, or saprobes in terrestrial host plants. They colonize in the early parasitic tissue of plants, provide a variety of nutrients in the cycle of parasitism and saprophytism, and participate in the basic metabolic process of plants. In the past ten years, many studies have been focused on the discovery of new species and biological secondary metabolites from this genus. In this review, we summarize a total of 335 bioactive secondary metabolites isolated from 26 known species and various unidentified species of Diaporthe and Phomopsis during 2010-2019. Overall, there are 106 bioactive compounds derived from Diaporthe and 246 from Phomopsis, while 17 compounds are found in both of them. They are classified into polyketides, terpenoids, steroids, macrolides, ten-membered lactones, alkaloids, flavonoids, and fatty acids. Polyketides constitute the main chemical population, accounting for 64%. Meanwhile, their bioactivities mainly involve cytotoxic, antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory, anti-algae, phytotoxic, and enzyme inhibitory activities. Diaporthe and Phomopsis exhibit their potent talents in the discovery of small molecules for drug candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shao-Hua Wu
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (T.-C.X.); (Y.-H.L.); (J.-F.W.); (Z.-Q.S.); (Y.-G.H.); (S.-S.L.); (C.-S.L.)
| |
Collapse
|
4
|
Haribabu J, Srividya S, Mahendiran D, Gayathri D, Venkatramu V, Bhuvanesh N, Karvembu R. Synthesis of Palladium(II) Complexes via Michael Addition: Antiproliferative Effects through ROS-Mediated Mitochondrial Apoptosis and Docking with SARS-CoV-2. Inorg Chem 2020; 59:17109-17122. [PMID: 33231439 PMCID: PMC7724763 DOI: 10.1021/acs.inorgchem.0c02373] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Indexed: 12/27/2022]
Abstract
Metal complexes have numerous applications in the current era, particularly in the field of pharmaceutical chemistry and catalysis. A novel synthetic approach for the same is always a beneficial addition to the literature. Henceforth, for the first time, we report the formation of three new Pd(II) complexes through the Michael addition pathway. Three chromone-based thiosemicarbazone ligands (SVSL1-SVSL3) and Pd(II) complexes (1-3) were synthesized and characterized by analytical and spectroscopic tools. The Michael addition pathway for the formation of complexes was confirmed by spectroscopic studies. Distorted square planar structure of complex 2 was confirmed by single-crystal X-ray diffraction. Complexes 1-3 were subjected to DNA- and BSA-binding studies. The complex with cyclohexyl substituent on the terminal N of thiosemicarbazone (3) showed the highest binding efficacy toward these biomolecules, which was further understood through molecular docking studies. The anticancer potential of these complexes was studied preliminarily by using MTT assay in cancer and normal cell lines along with the benchmark drugs (cisplatin, carboplatin, and gemcitabine). It was found that complex 3 was highly toxic toward MDA-MB-231 and AsPC-1 cancer cells with IC50 values of 0.5 and 0.9 μM, respectively, and was more efficient than the standard drugs. The programmed cell death mechanism of the complexes in MDA-MB-231 cancer cells was confirmed. Furthermore, the complexes induced apoptosis via ROS-mediated mitochondrial signaling pathway. Conveniently, all the complexes showed less toxicity (≥50 μM) against MCF-10a normal cell line. Molecular docking studies were performed with VEGFR2, EGFR, and SARS-CoV-2 main protease to illustrate the binding efficiency of the complexes with these receptors. To our surprise, binding potential of the complexes with SARS-CoV-2 main protease was higher than that with chloroquine and hydroxychloroquine.
Collapse
Affiliation(s)
- Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Swaminathan Srividya
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Dharmasivam Mahendiran
- Department of Pathology, Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dasararaju Gayathri
- Centre of Advanced
Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Vemula Venkatramu
- Department of Physics, Krishna University
Dr. MRAR PG Centre, Nuzvid 521201, India
| | - Nattamai Bhuvanesh
- Department
of Chemistry, Texas A & M University, College Station, Texas 77842, United States
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
5
|
Haribabu J, Balachandran C, Tamizh MM, Arun Y, Bhuvanesh NSP, Aoki S, Karvembu R. Unprecedented formation of palladium(II)-pyrazole based thiourea from chromone thiosemicarbazone and [PdCl 2(PPh 3) 2]: Interaction with biomolecules and apoptosis through mitochondrial signaling pathway. J Inorg Biochem 2020; 205:110988. [PMID: 31981770 DOI: 10.1016/j.jinorgbio.2019.110988] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
Abstract
Two novel pyrazole based thiourea palladium(II) complexes, [PdCl(PPh3)(C9H8NO2S-pz)] (1) and [PdCl(PPh3)(C14H10NO2S-pz)] (2) [pz = pyrazole (C3H2N2)] have been obtained unexpectedly from chromone thiosemicarbazones (L1 and L2) and [PdCl2(PPh3)2]. The compounds have been fully characterized by physicochemical studies. The single crystal X-ray diffraction and spectral studies revealed square planar geometry for the complexes. The conversion of chromone thiosemicarbazone into pyrazole based thiourea might have happened through coordination to palladium(II) ion after enolization, Michael addition and ring opening followed by cyclization. To the best of our knowledge, this is the first report for the conversion of chromone thiosemicarbazone into pyrazole based thiourea moiety. Plausible mechanism was proposed based on the spectroscopic studies. Calf thymus (CT) DNA binding of the compounds was explored using various spectroscopic and molecular docking methods. DNA cleavage studies suggested that complexes 1 and 2 had the capacity to cleave the supercoiled DNA (pUC19) to its naked form. In vitro cytotoxic property of the ligands and complexes has been evaluated against three human cancer cells such as A549, HepG-2 and U937. Complex 2 exhibited potent cytotoxic activity against HepG-2 cells with the IC50 value of 10.4 μM. In addition, mechanistic studies showed that complex 2 induced apoptosis through mitochondrial signaling pathway in HepG-2 cells. Beneficially, complex 2 showed less toxicity against human lung (IMR90) normal cells and hence it emerges as a potential candidate for further studies.
Collapse
Affiliation(s)
- Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India; Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Manoharan Muthu Tamizh
- Department of Chemistry, Siddha Central Research Institute, Central Council for Research in Siddha, Arumbakkam, Chennai 600106, India
| | - Yuvaraj Arun
- Organic Chemistry Division, CSIR-Central Leather Research Institute, Chennai 600020, India
| | | | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| |
Collapse
|
6
|
Mateos J, Cherubini-Celli A, Carofiglio T, Bonchio M, Marino N, Companyó X, Dell’Amico L. A microfluidic photoreactor enables 2-methylbenzophenone light-driven reactions with superior performance. Chem Commun (Camb) 2018; 54:6820-6823. [DOI: 10.1039/c8cc01373j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A general and scalable microfluidic photoreactor for light-driven reaction of 2-methylbenzophenones was successfully developed.
Collapse
Affiliation(s)
- Javier Mateos
- Dipartimento di Scienze Chimiche and ITM-CNR UoS of Padova
- Università di Padova
- 35131 Padova
- Italy
| | - Alessio Cherubini-Celli
- Dipartimento di Scienze Chimiche and ITM-CNR UoS of Padova
- Università di Padova
- 35131 Padova
- Italy
| | - Tommaso Carofiglio
- Dipartimento di Scienze Chimiche and ITM-CNR UoS of Padova
- Università di Padova
- 35131 Padova
- Italy
| | - Marcella Bonchio
- Dipartimento di Scienze Chimiche and ITM-CNR UoS of Padova
- Università di Padova
- 35131 Padova
- Italy
| | - Nadia Marino
- Dipartimento di Scienze Chimiche and ITM-CNR UoS of Padova
- Università di Padova
- 35131 Padova
- Italy
| | - Xavier Companyó
- Dipartimento di Scienze Chimiche and ITM-CNR UoS of Padova
- Università di Padova
- 35131 Padova
- Italy
| | - Luca Dell’Amico
- Dipartimento di Scienze Chimiche and ITM-CNR UoS of Padova
- Università di Padova
- 35131 Padova
- Italy
| |
Collapse
|