1
|
Taouali W, Azazi A, Hassani R, EL-Araby EH, Alimi K. Exploring the Impact of Structural Modifications of Phenothiazine-Based Novel Compounds for Organic Solar Cells: DFT Investigations. Polymers (Basel) 2025; 17:115. [PMID: 39795518 PMCID: PMC11722700 DOI: 10.3390/polym17010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
This paper explores a novel group of D-π-A configurations that has been specifically created for organic solar cell applications. In these material compounds, the phenothiazine, the furan, and two derivatives of the thienyl-fused IC group act as the donor, the π-conjugated spacer, and the end-group acceptors, respectively. We assess the impact of substituents by introducing bromine atoms at two potential substitution sites on each end-group acceptor (EG1 and EG2). With the donor and π-bridge held constant, we have employed density functional theory and time-dependent DFT simulations to explore the photophysical and optoelectronic properties of tailored compounds (M1-M6). We have demonstrated how structural modifications influence the optoelectronic properties of materials for organic solar cells. Moreover, all proposed compounds exhibit a greater Voc exceeding 1.5 V, a suitable HOMO-LUMO energy gap (2.14-2.30 eV), and higher dipole moments (9.23-10.90 D). Various decisive key factors that are crucial for exploring the properties of tailored compounds-frontier molecular orbitals, transition density matrix, electrostatic potential, open-circuit voltage, maximum absorption, reduced density gradient, and charge transfer length (Dindex)-were also explored. Our analysis delivers profound insights into the design principles of optimizing the performance of organic solar cell applications based on halogenated material compounds.
Collapse
Affiliation(s)
- Walid Taouali
- Research Laboratory of Asymmetric Synthesis and Molecular Engineering of Materials for Organic Electronic (LR18ES19), Department of Physics, Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia;
| | - Amel Azazi
- Department of Physical Sciences, Physics Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Rym Hassani
- Environment and Nature Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Entesar H. EL-Araby
- Department of Physical Sciences, Physics Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Kamel Alimi
- Research Laboratory of Asymmetric Synthesis and Molecular Engineering of Materials for Organic Electronic (LR18ES19), Department of Physics, Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia;
| |
Collapse
|
2
|
Vladimirova S, Hristova R, Iliev I. Synthesis, Cytotoxicity and Antiproliferative Effect of New Pyrrole Hydrazones. Molecules 2024; 29:5499. [PMID: 39683659 DOI: 10.3390/molecules29235499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Novel pyrrole-based carbohydrazide (1) and hydrazones (1A-D) were synthesized, characterized, and subjected to spectroscopic studies. The hydrazones were obtained by reacting a pyrrole hydrazide with substituted pyrrole aldehydes. The initial carbohydrazide was prepared by selective hydrazinolysis of the obtained N-pyrrolylcarboxylic acid ethyl ester. The biological activity of the newly synthesized compounds was investigated in vitro on a panel of tumor and non-tumor cell lines. Mouse embryonic fibroblasts BALB 3T3 clone A31 were used in the safety test (BALB 3T3 NRU-assay). Antiproliferative activity was determined on keratinocytes (HaCaT) and melanoma (SH-4) cells by MTT dye reduction assay. The safety test of the compounds showed low cytotoxicity and absence of phototoxic potential. Among our novel pyrrole hydrazones, 1C was the most selective (SI = 3.83) in human melanoma cells and exhibited very good antiproliferative activity (IC50 = 44.63 ± 3.51 μM). The cytotoxic effect of 1C correlates with its ability to induce apoptosis and to cause cell cycle arrest in the S phase. In addition, the results show that hydrazones obtained by condensation with β-aldehydes are more bioactive than those obtained by condensation with α-aldehydes.
Collapse
Affiliation(s)
- Stanislava Vladimirova
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Rossitsa Hristova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
Taouali W, Alimi K. Optimizing non-fullerene acceptor molecules constituting fluorene core for enhanced performance in organic solar cells: a theoretical methodology. J Mol Model 2024; 30:342. [PMID: 39297915 DOI: 10.1007/s00894-024-06120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
CONTEXT Looking for novel outstanding performance materials suitable for organic solar cells, we constructed a range of non-fullerene acceptors (NFAs) evolved from the recently synthesized acceptor molecule identified as DICTIF, structured around fluorene core where 2-(2,3-dihydro-3-oxo-1H-inden-1-ylidene) propanedinitrile presented the terminals end-groups. Employing density functional theory (DFT) and time dependent-DFT (TD-DFT) simulations, we have simulated the impact of altering the end groups of DICTIF molecule by five assorted acceptors molecules, for the purpose of exploring their opto-electronic properties and their performance in organic solar cell (OSC) applications. We proved that the designed non-fullerene acceptors provide enhanced efficiency compared to the synthesized molecule, such as planar geometries and narrower energy gap ranging from 1.51 to 1.95 eV. A red shift in absorption was observed for all tailored molecules (λmax = 583.5-711.4 nm) as compared to the reference molecule (λmax = 578 nm).Various decisive factors such as frontier molecular orbitals (FMOs), exciton binding energy (EB), absorption maximum (λmax), open circuit voltage (VOC), reorganization energies (RE), transition density matrix (TDM), reduced density gradient (RDG), and electron-hole overlap have also been computed for analyzing the performance of NFAs. Low reorganizational energy values facilitate charge mobility which improves the conductivity of all the designed molecules. This study showed that our novel tailored molecules might be suitable candidates for the fabrication of highly efficient photovoltaic materials. METHODS After testing various hybrid functionals, optimized geometries were assigned using DFT HSEH1PBE/6-31G(d) level of theory. Electronic excitations and absorption spectra were investigated using the TD-DFT MPW1PW91/6-31G(d) level of theory. We ascertained that HSEH1PBE/6-31G(d) level of theory yield the closest calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the DICTIF to the corresponding experimental ones and that TD-MPW1PW91//6-31G(d) was the most suitable level of theory for exploring electronic excitations and finding the maximum of absorption (λmax).
Collapse
Affiliation(s)
- Walid Taouali
- Laboratoire de Recherche: Synthèse asymétrique et ingénierie moléculaires des matériaux nouveaux pour l'électroniques Organiques (LR18ES19), Faculté des Sciences de Monastir, Université de Monastir-Tunisie, Monastir, Tunisia.
| | - Kamel Alimi
- Laboratoire de Recherche: Synthèse asymétrique et ingénierie moléculaires des matériaux nouveaux pour l'électroniques Organiques (LR18ES19), Faculté des Sciences de Monastir, Université de Monastir-Tunisie, Monastir, Tunisia
| |
Collapse
|
4
|
Georgieva M, Mateev E, Valkova I, Kuteva H, Tzankova D, Stefanova D, Yordanov Y, Lybomirova K, Zlatkov A, Tzankova V, Kondeva-Burdina M. Neurotoxicity, Neuroprotection, In Vitro MAOA/MAOB Inhibitory Activity Assessment, Molecular Docking, and Permeability Assay Studies of Newly Synthesized Hydrazones Containing a Pyrrole Ring. Molecules 2024; 29:4338. [PMID: 39339333 PMCID: PMC11433870 DOI: 10.3390/molecules29184338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases such as Parkinson's and Alzheimer's continue to be some of the most significant challenges in modern medicine. Recent research related to the molecular mechanisms of parkinsonism has opened up new approaches to antiparkinsonian therapy. In response to this, we present the evaluation of the potential neuroprotective and MAOA/MAOB inhibitory effects of newly synthesized hydrazones, containing a pyrrole moiety in the carboxyl fragment of the structure. The substances were studied on different brain subcellular fractions, including rat brain synaptosomes, mitochondria, and microsomes. The single application of 50 µM of each compound to the subcellular fractions showed that all substances exhibit a weak neurotoxic effect, with 7b, 7d, and 8d being the least neurotoxic representatives. The corresponding neuroprotective and antioxidant effects were also evaluated in different injury models on subcellular fractions, single out 7b, 7d, and 8d as the most prominent derivatives. A 1 µM concentration of each molecule from the series was also studied for potential hMAOA/hMAOB inhibitory effects. The results revealed a lack of hMAOA activity for all evaluated structures and the appearance of hMAOB effects, with compounds 7b, 7d, and 8d showing effects similar to those of selegiline. The best hMAOB selectivity index (>204) was determined for 7d and 8d, distinguishing these two representatives as the most promising molecules for further studies as potential selective MAOB inhibitors. The performed molecular docking simulations defined the appearance of selective MAOB inhibitory effects based on the interaction of the tested molecules with Tyr398, which is one of the components of the aromatic cage of MAOB and participated in π-π stabilization with the aromatic pyrrole ring. The preliminary PAMPA testing indicated that in relation to the blood-brain barrier (BBB) permeability, the tested pyrrole-based hydrazones may be considered as high permeable, except for 8a and 8e, which were established to be permeable in the medium range with -logP of 5.268 and 5.714, respectively, compared to the applied references.
Collapse
Affiliation(s)
- Maya Georgieva
- Department Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (E.M.); (D.T.); (A.Z.)
| | - Emilio Mateev
- Department Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (E.M.); (D.T.); (A.Z.)
| | - Iva Valkova
- Department Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Hristina Kuteva
- Department Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (H.K.); (D.S.); (Y.Y.); (V.T.); (M.K.-B.)
| | - Diana Tzankova
- Department Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (E.M.); (D.T.); (A.Z.)
| | - Denitsa Stefanova
- Department Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (H.K.); (D.S.); (Y.Y.); (V.T.); (M.K.-B.)
| | - Yordan Yordanov
- Department Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (H.K.); (D.S.); (Y.Y.); (V.T.); (M.K.-B.)
| | - Karolina Lybomirova
- Department Occupational Medicine, Faculty of Public Health, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Alexander Zlatkov
- Department Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (E.M.); (D.T.); (A.Z.)
| | - Virginia Tzankova
- Department Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (H.K.); (D.S.); (Y.Y.); (V.T.); (M.K.-B.)
| | - Magdalena Kondeva-Burdina
- Department Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (H.K.); (D.S.); (Y.Y.); (V.T.); (M.K.-B.)
| |
Collapse
|
5
|
Barth M, Kleiner I, Nguyen HVL. Coupled internal rotations and 14N quadrupole hyperfine structure of 2,4-dimethylpyrrole investigated by microwave spectroscopy and quantum chemistry. J Chem Phys 2024; 160:244303. [PMID: 38912676 DOI: 10.1063/5.0213319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
The microwave spectrum of 2,4-dimethylpyrrole was investigated using a Fourier-transform microwave spectrometer in a supersonic expansion. Torsional splittings arising from two inequivalent methyl internal rotors in combination with hyperfine splittings due to the nuclear quadrupole coupling of the 14N nucleus were observed. The experiments were accompanied by quantum chemical calculations. A total of 1561 rotational lines were assigned and fitted in global fits using the programs XIAM and BELGI-Cs-2Tops-hyperfine, both achieved the measurement accuracy of 4 kHz. Local separate fits were also performed to verify the correctness of the assignment. Accurate experimental molecular and internal rotation parameters could be deduced and compared to the calculated ones. The barrier to internal rotation of the 2-methyl rotor was determined to be 277.830(26) cm-1, essentially the same as the value of about 280 cm-1 found for 2-methylpyrrole but lower than the value of 317 cm-1 found for 2,5-dimethylpyrrole. The torsional barrier value of the 4-methyl rotor is 262.210(27) cm-1, slightly higher than the value of 246 cm-1 found for 3-methylpyrrole. Benchmarking the rotational constants for 2,4- and 2,5-dimethylpyrrole revealed that the MP2/6-31G(d,p) level could be helpful to guide the assignment of microwave spectra of pyrrole derivatives.
Collapse
Affiliation(s)
- Mike Barth
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - Isabelle Kleiner
- Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - Ha Vinh Lam Nguyen
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
- Institut Universitaire de France (IUF), 1 rue Descartes, F-75231 Paris, France
| |
Collapse
|
6
|
Atmaca H, Ilhan S, Korkmaz E, Zora M. Endoplasmic Reticulum Stress-Induced Apoptotic Effects of Novel 1-Pyrroline (3,4-Dihydro-2H-pyrrole) Derivatives on Breast Cancer Cells. Chem Biodivers 2022; 19:e202200123. [PMID: 35785434 DOI: 10.1002/cbdv.202200123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/17/2022] [Indexed: 11/11/2022]
Abstract
Heterocyclic compounds have emerged as promising and appealing scaffolds for developing effective antitumor agents. Here, the effects of synthesized 24 different 1-pyrroline derivatives (PDs) containing substituted aryl sulfide moiety were investigated on human breast cancer cell lines. The viability of cells was assessed via MTT assay. Reactive oxygen species (ROS) generation was analyzed via fluorescent dye CM-H2DCFDA. Apoptotic cells were determined via flow cytometry. Endoplasmic reticulum (ER) stress-associated protein levels were analyzed via western blot analysis. Four of the PDs (PD-12, -14, -16 and -17) had great cytotoxic selectivity against breast cancer cells. Apoptotic cell death was induced by PDs via the generation of ROS. PDs significantly increased the GRP78, p-PEAK, p-eIF2α, and CHOP protein levels indicating ER stress in breast cancer cells. These results imply that newly synthesized PDs may be potential anticancer agents as they selectively inhibit breast cancer cells.
Collapse
Affiliation(s)
- Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140, Manisa, Turkey
| | - Suleyman Ilhan
- Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140, Manisa, Turkey
| | - Esra Korkmaz
- Department of Chemistry, Middle East Technical University, 06800, Ankara, Turkey
| | - Metin Zora
- Department of Chemistry, Middle East Technical University, 06800, Ankara, Turkey
| |
Collapse
|
7
|
Synthesis, crystal structure, spectroscopic, quantum chemical investigation, molecular docking and ADMET prediction of 2(E)-3-(anthracen-9-yl)-1-(1-methyl-1H-pyrrol-2-yl) prop-2-en-1-one. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
Unexpected dihydropyridinium derivatives using a multicomponent reaction containing unprotected amino acids. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Lakshmanan S, Govindaraj D, Mahalakshmi K, Thirumurugan K, Ramalakshmi N, Antony SA. Synthesis, characterization, and anti-cancer activity of chalcone derivatives as-potent anaplastic lymphoma kinase inhibitors. Struct Chem 2021. [DOI: 10.1007/s11224-020-01707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Atmaca H, Ilhan S, Yilmaz ES, Zora M. 4-Propargyl-substituted 1H-pyrroles induce apoptosis and autophagy via extracellular signal-regulated signaling pathway in breast cancer. Arch Pharm (Weinheim) 2021; 354:e2100170. [PMID: 34165807 DOI: 10.1002/ardp.202100170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022]
Abstract
Novel pyrrole derivatives (PDs) with propargyl units (1-7) were investigated for their anticancer activity on breast cancer cells. The MTT assay was used to assess the cell viability. Morphological changes in human breast cancer cells were visualized under a phase-contrast microscope. Apoptosis and autophagy were detected using the DNA fragmentation assay and staining by autophagic vacuoles, respectively. The levels of apoptosis- and autophagy-related proteins such as cytochrome c, Bcl-2, LC3-I/II were investigated by Western blot analysis. The effect of PDs on the ERK1/2 signaling pathway was investigated using specific inhibitors. All the tested PDs were found to be active in the range of 36.7 ± 0.2 to 459.7 ± 4.2 µM. Compounds 3 and 4 showed cytotoxic activity in breast cancer cells, but were found to be safer with lower cytotoxicity on human nontumorigenic epithelial breast cells. Compound 4 induced apoptosis, whereas compound 3 induced autophagy. Both compounds inhibited the ERK signaling pathway in breast cancer cells. The present study revealed that both synthesized PDs induced different programmed cell death types by inhibiting the ERK signaling pathway in two genotypically different breast cancer cells. Therefore, novel PDs might be promising anticancer agents for breast cancer therapy and further structural modifications of PDs may yield promising anticancer agents.
Collapse
Affiliation(s)
- Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| | - Suleyman Ilhan
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| | - Elif Serel Yilmaz
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Metin Zora
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
11
|
Andin AN. A three-component condensation of cyclic enamino ketones, phenylglyoxal hydrate, and ethyl cyanoacetate. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02863-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Modulation of Differentiation of Embryonic Stem Cells by Polypyrrole: The Impact on Neurogenesis. Int J Mol Sci 2021; 22:ijms22020501. [PMID: 33419082 PMCID: PMC7825406 DOI: 10.3390/ijms22020501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/30/2022] Open
Abstract
The active role of biomaterials in the regeneration of tissues and their ability to modulate the behavior of stem cells in terms of their differentiation is highly advantageous. Here, polypyrrole, as a representantive of electro-conducting materials, is found to modulate the behavior of embryonic stem cells. Concretely, the aqueous extracts of polypyrrole induce neurogenesis within embryonic bodies formed from embryonic stem cells. This finding ledto an effort to determine the physiological cascade which is responsible for this effect. The polypyrrole modulates signaling pathways of Akt and ERK kinase through their phosphorylation. These effects are related to the presence of low-molecular-weight compounds present in aqueous polypyrrole extracts, determined by mass spectroscopy. The results show that consequences related to the modulation of stem cell differentiation must also be taken into account when polypyrrole is considered as a biomaterial.
Collapse
|
13
|
Ranjbar S, Shabanpoor MR, Dehghani Z, Firuzi O, Edraki N, Khoshneviszadeh M. Dihydronaphthalenone chalconoid derivatives as potential cathepsin B inhibitors; design, synthesis, cytotoxicity evaluation and docking analysis. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-979020200004181074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | | | - Mehdi Khoshneviszadeh
- Shiraz University of Medical Sciences, Iran; Shiraz University of Medical Sciences, Iran
| |
Collapse
|
14
|
Mbugua S, Sibuyi NRS, Njenga LW, Odhiambo RA, Wandiga SO, Meyer M, Lalancette RA, Onani MO. New Palladium(II) and Platinum(II) Complexes Based on Pyrrole Schiff Bases: Synthesis, Characterization, X-ray Structure, and Anticancer Activity. ACS OMEGA 2020; 5:14942-14954. [PMID: 32637768 PMCID: PMC7330904 DOI: 10.1021/acsomega.0c00360] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/14/2020] [Indexed: 05/09/2023]
Abstract
New palladium (Pd)II and platinum (Pt)II complexes (C1-C5) from the Schiff base ligands, R-(phenyl)methanamine (L1), R-(pyridin-2-yl)methanamine (L2), and R-(furan-2-yl)methanamine (L3) (R-(E)-N-((1H-pyrrol-2-yl) methylene)) are herein reported. The complexes (C1-C5) were characterized by FTIR, 1H and 13C NMR, UV-vis, and microanalyses. Single-crystal X-ray crystallographic analysis was performed for the two ligands (L1-L2) and a Pt complex. Both L1 and L2 belong to P21/n monoclinic and P-1 triclinic space systems, respectively. The complex C5 belongs to the P21/c monoclinic space group. The investigated molar conductivity of the complexes in DMSO gave the range 4.0-8.8 μS/cm, suggesting neutrality, with log P values ≥ 1.2692 ± 0.004, suggesting lipophilicity. The anticancer activity and mechanism of the complexes were investigated against various human cancerous (Caco-2, HeLa, HepG2, MCF-7, and PC-3) and noncancerous (MCF-12A) cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Apopercentage assays, respectively. C5 demonstrated strong DNA-binding affinity for calf thymus DNA (CT-DNA) with a binding constant of 8.049 × 104 M-1. C3 reduced cell viability of all the six cell lines, which included five cancerous cell lines, by more than 80%. The C5 complex also demonstrated remarkably high selectivity with no cytotoxic activity toward the noncancerous breast cell line but reduced the viability of the five cancerous cell lines, which included one breast cancer cell line, by more than 60%. Further studies are required to evaluate the selective toxicity of these two complexes and to fully understand their mechanism of action.
Collapse
Affiliation(s)
- Simon
N. Mbugua
- Organometallics
and Nanomaterials, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
- Department
of Chemistry, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Nicole R. S. Sibuyi
- Department
of Science and Technology/Mintek Nanotechnology Innovation Centre
(DST/Mintek NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Lydia W. Njenga
- Department
of Chemistry, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Ruth A. Odhiambo
- Department
of Chemistry, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Shem O. Wandiga
- Department
of Chemistry, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Mervin Meyer
- Department
of Science and Technology/Mintek Nanotechnology Innovation Centre
(DST/Mintek NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Roger A. Lalancette
- Rutgers,
Department of Chemistry, Rutgers State University, 73 Warren St., Newark, New Jersey 07102, United States
| | - Martin O. Onani
- Organometallics
and Nanomaterials, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
15
|
Ceylan M, Erkan S, Yaglioglu AS, Akdogan Uremis N, Koç E. Antiproliferative Evaluation of Some 2‐[2‐(2‐Phenylethenyl)‐cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles: DFT and Molecular Docking Study. Chem Biodivers 2020; 17:e1900675. [DOI: 10.1002/cbdv.201900675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Mustafa Ceylan
- Department of ChemistryTokat Gaziosmanpaşa University 60250 Tokat Turkey
| | - Sultan Erkan
- Department of Chemistry and Chemical Process TechnologySivas Cumhuriyet University 58140 Sivas Turkey
| | - Ayse Sahin Yaglioglu
- Department of ChemistryFaculty of ScienceÇankırı Karatekin University 18100 Çankırı Turkey
| | | | - Esra Koç
- Department of ChemistryTokat Gaziosmanpaşa University 60250 Tokat Turkey
| |
Collapse
|
16
|
Prabu DSD, Lakshmanan S, Thirumurugan K, Ramalakshmi N, Antony SA. Synthesis, Molecular Docking, DFT Study of Novel N-Benzyl-2-(3-cyano-4-isobutoxyphenyl)-
4-methylthiazole-5-carboxamide Derivatives and their Antibacterial Activity. ACTA ACUST UNITED AC 2020. [DOI: 10.14233/ajchem.2020.22390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A series of febuxostat based new chemical entities was synthesized using microwave method and characterized by NMR, mass and FT-IR spectral studies. Molecular docking of febuxostat amide nucleus substitution compounds 8c (-7.91kcal/mol), 8g (-7.94 kcal/mol) exhibiting high binding energy against ALK receptors. Theoretical investigation of MEPs, HOMO, LUMO and energy gap of HOMO-LUMO were calculated by B3LYP/6-31G method. Among the tested compounds, methoxy substituted compound 8g showed highest antibacterial activity against S. aereus and B. subtilis.
Collapse
Affiliation(s)
| | | | - K. Thirumurugan
- Department of Chemistry, Presidency College, Chennai-600005, India
| | - N. Ramalakshmi
- Department of Chemistry, Presidency College, Chennai-600005, India
| | - S. Arul Antony
- Department of Chemistry, Presidency College, Chennai-600005, India
| |
Collapse
|
17
|
Computational approach to study the synthesis of noscapine and potential of stereoisomers against nsP3 protease of CHIKV. Heliyon 2019; 5:e02795. [PMID: 32382664 PMCID: PMC7201138 DOI: 10.1016/j.heliyon.2019.e02795] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/11/2019] [Accepted: 10/31/2019] [Indexed: 11/29/2022] Open
Abstract
Chikungunya fever is a major public health issue in India affecting millions of people and occurs due to Chikungunya. Chikungunya virus (CHIKV) is a single stranded RNA virus from the family of Togaviridae and genus alpha virus. It contain three structural proteins: glycosylated E1 and E2, embedded in the viral envelope, and a non-glycosylated nucleocapsid protein. Till date, researchers are working on inhibition of CHIKV but till now no cheap and effective medicine is available in the market. Therefore, the authors of this work thought of isoquinoline based noscapine to inhibit the nsP3 protease of CHIKV. The aim of the work is to understand the mechanism for the synthesis of noscapine theoretically using DFT. Further study the potential of all four isomers of noscapines {(13 (S,R), 14 (R,R), 15 (R,S) and 16 (S,S)} against nsP3 protease of CHIKV with the help of docking and MD simulation. The integrated e-pharmacophore binding affinity based virtual screening, docking and molecular dynamics simulation recognized four hits isomers as inhibition nsP3 protease of CHIKV. The docking energies of all the isomers of noscapine (13–16) with nsP3 protease CHIKV was found out to be more negative than baicalin (−8.06 kcal/mol) on selected sites. Amongst the isomers of noscapine, CMPD 13 possessed best binding affinity with four hydrogen bonding interactions. Further, ADME properties and blood-brain barrier permeability properties have been calculated. DFT studies of all the isomers of noscapine was investigated.
Collapse
|
18
|
Synthesis of Polysubstituted Pyrroles by the Reaction of Enaminoketones, Arylglyoxals, and N,N-Dimethylbarbituric Acid. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02613-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Louroubi A, Nayad A, Hasnaoui A, Hdoufane I, Idouhli R, Saadi M, El Ammari L, Abdessalam A, Berraho M, El Firdoussi L, Ait Ali M. Synthesis, structural characterization, theoretical studies and corrosion inhibition of a new pyrrole derivative:1-(1-benzyl-4-(4-chlorophenyl)-2,5-dimethyl-1H-pyrrol-3-yl)ethanone. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
A model to study the inhibition of nsP2B-nsP3 protease of dengue virus with imidazole, oxazole, triazole thiadiazole, and thiazolidine based scaffolds. Heliyon 2019; 5:e02124. [PMID: 31406937 PMCID: PMC6684460 DOI: 10.1016/j.heliyon.2019.e02124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/26/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
A theoretical model was developed to allosterically inhibit the biological activity of dengue virus (DENV) by targeting the non-structural protein ns2B-nsP3 protease based on the in silico studies. The imidazole, oxazole, triazole, thiadiazole, and thiazolidine based scaffolds were imported from the ZINC database, reported by various research group with different biological activity. They were found biologically active as they contain heterocyclic fragments. Generic evolutionary based molecular docking was performed to screen the highly potent molecule. The docking results show that the molecule having ZINC ID-633972 is best inhibitor. Further, the bioavailability and other physiochemical parameters were also calculated for the top four molecule. The highly potent molecule was further refined by the density functional theory and molecular dynamic (MD) simulation. The MD analysis coroborate the successful docking of the molecule in the binding cavity of nsP2B-nsP3 protease of DENV. The Molecular Mechanics Poisson-Boltzmann Surface Area approach was also applied and result coroborate the docking and MD result.
Collapse
|
21
|
Sam Daniel Prabu D, Lakshmanan S, Ramalakshmi N, Thirumurugan K, Govindaraj D, Antony SA. Synthesis, characterization of benzimidazole carboxamide derivatives as potent anaplastic lymphoma kinase inhibitor and antioxidant activity. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1554144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- D. Sam Daniel Prabu
- PG and Research Department of Chemistry, Presidency College, Chennai, TN, India
| | | | - N. Ramalakshmi
- PG and Research Department of Chemistry, Presidency College, Chennai, TN, India
| | - K. Thirumurugan
- PG and Research Department of Chemistry, Presidency College, Chennai, TN, India
| | - Dharman Govindaraj
- Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, TN, India
| | - S. Arul Antony
- PG and Research Department of Chemistry, Presidency College, Chennai, TN, India
| |
Collapse
|
22
|
Thirumurugan K, Lakshmanan S, Govindaraj D, Daniel Prabu DS, Ramalakshmi N, Arul Antony S. Design, synthesis and anti-inflammatory activity of pyrimidine scaffold benzamide derivatives as epidermal growth factor receptor tyrosine kinase inhibitors. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Ahmad S, Alam O, Naim MJ, Shaquiquzzaman M, Alam MM, Iqbal M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur J Med Chem 2018; 157:527-561. [PMID: 30119011 DOI: 10.1016/j.ejmech.2018.08.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/15/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
Pyrrole is a heterocyclic ring template with multiple pharmacophores that provides a way for the generation of library of enormous lead molecules. Owing to its vast pharmacological profile, pyrrole and its analogues have drawn much attention of the researchers/chemists round the globe to be explored exhaustively for the benefit of mankind. This review focusses on recent advancements; pertaining to pyrrole scaffold, discussing various aspects of structure activity relationship and its bioactivities.
Collapse
Affiliation(s)
- Shujauddin Ahmad
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India.
| | - Mohd Javed Naim
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India
| | - Mohammad Shaquiquzzaman
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India
| | - M Mumtaz Alam
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India
| | - Muzaffar Iqbal
- Dept. of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
A clean synthesis of 2,5-dihydro-1H-pyrrole-2-carboxylates under catalyst-free and solvent-free conditions: cytotoxicity and molecular docking studies. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1359-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Zargari F, Lotfi M, Shahraki O, Nikfarjam Z, Shahraki J. Flavonoids as potent allosteric inhibitors of protein tyrosine phosphatase 1B: molecular dynamics simulation and free energy calculation. J Biomol Struct Dyn 2017; 36:4126-4142. [PMID: 29216799 DOI: 10.1080/07391102.2017.1409651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a member of the PTP superfamily which is considered to be a negative regulator of insulin receptor (IR) signaling pathway. PTP1B is a promising drug target for the treatment of type 2 diabetes, obesity, and cancer. The existence of allosteric site in PTP1B has turned the researcher's attention to an alternate strategy for inhibition of this enzyme. Herein, the molecular interactions between the allosteric site of PTP1B with three non-competitive flavonoids, (MOR), (MOK), and (DPO) have been investigated. Three ligands were docked into allosteric site of the enzyme. The resulting protein-ligand complexes were used for molecular dynamics studies. Principal component and free-energy landscape (FEL) as well as cluster analyses were used to investigate the conformational and dynamical properties of the protein and identify representative enzyme substrates bounded to the inhibitors. Per residue energy decomposition analysis attributed dissimilar affinities of three inhibitors to the several hydrogen bonds and non-bonded interactions. In conclusion, our results exhibited an inhibitory pattern of the ligands against PTP1B.
Collapse
Affiliation(s)
- Farshid Zargari
- a Medicinal and Natural Products Chemistry Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Maryam Lotfi
- b Testing Calibration, Geotechnic & Technical Inspection Servies , Binaazma Sepahan Consulting Eng. Co. , Isfahan , Iran
| | - Omolbanin Shahraki
- c Health Technology Incubator Center , Zahedan University of Medical Sciences , Zahedan , Iran
| | - Zahra Nikfarjam
- d Department of Molecular and Supramolecular Modelling , Chemistry and Chemical Engineering Research Center of Iran , Tehran , Iran
| | - Jafar Shahraki
- e Department of Pharmacology and Toxicology, Faculty of Pharmacy , Zabol University of Medical Sciences , Zabol , Iran
| |
Collapse
|
26
|
Lakshmanan S, Govindaraj D, Ramalakshmi N, Antony SA. Synthesis, molecular docking, DFT calculations and cytotoxicity activity of benzo[g]quinazoline derivatives in choline chloride-urea. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|