1
|
Wang Z, Pan F, Zhang M, Liang S, Tian W. Discovery of potential anti- Staphylococcus aureus natural products and their mechanistic studies using machine learning and molecular dynamic simulations. Heliyon 2024; 10:e30389. [PMID: 38737232 PMCID: PMC11088314 DOI: 10.1016/j.heliyon.2024.e30389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
The structure-activity analysis (SAR) and machine learning were used to investigate potential anti-S. aureus agents in a faster method. In this study, 24 oxygenated benzene ring components with S. aureus inhibition capacity were confirmed by literature exploring and in-house experiments, and the SAR analysis suggested that the hydroxyl group position may affect the anti-S. aureus activity. The 2D-MLR-QSAR model with 9 descriptors was further evaluated as the best model among the 21 models. After that, hesperetic acid and 2-HTPA were further explored and evaluated as the potential anti-S. aureus agents screening in the natural product clustering library through the best QSAR model calculation. The antibacterial capacities of hesperetic acid and 2-HTPA had been investigated and proved the similar predictive pMIC value resulting from the QSAR model. Besides, the two novel components were able to inhibit the growth of S. aureus by disrupting the cell membrane through the molecular dynamics simulation (MD), which further evidenced by scanning electron microscopy (SEM) test and PI dye results. Overall, these results are highly suggested that QSAR can be used to predict the antibacterial agents targeting S. aureus, which provides a new paradigm to research the molecular structure-antibacterial capacity relationship.
Collapse
Affiliation(s)
- Zinan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, People's Republic of China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Shan Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, People's Republic of China
| |
Collapse
|
2
|
Ata AÇ, Yildiko Ü, Tanriverdi AA, Ebiri R, Yiğit E, Orak İ, Cakmak İ. Two‐step novel aromatic polyimide synthesis and characterization: Survey of energy calculations and diode applications. J Appl Polym Sci 2023. [DOI: 10.1002/app.53689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ahmet Çağrı Ata
- Institute of Science, Department of Chemistry Kafkas University Kars Turkey
| | - Ümit Yildiko
- Architecture and Engineering Faculty, Department of Bioengineering Kafkas University Kars Turkey
| | | | - Rüstem Ebiri
- Faculty of Sciences. Department of Chemistry Ataturk University Erzurum Turkey
| | - Evin Yiğit
- Department of Chemistry, Faculty of Sciences and Arts Bingol University Bingol Turkey
| | - İkram Orak
- Vocational School of Health Services Bingol University Bingol Turkey
- Renewable Energy Systems, Institute of Science Bingol University Bingol Turkey
| | - İsmail Cakmak
- Faculty of Arts and Sciences. Department of Chemistry Kafkas University Kars Turkey
| |
Collapse
|
3
|
Lazrak J, Ech-chihbi E, Salim R, Saffaj T, Rais Z, Taleb M. Insight into the corrosion inhibition mechanism and adsorption behavior of aldehyde derivatives for mild steel in 1.0 M HCl and 0.5 M H2SO4. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
Structural insights, spectral, flourescence, Z-scan, C-H…O/N-H…O hydrogen bonding and AIM, RDG, ELF, LOL, FUKUI analysis, NLO activity of N-2(Methoxy phenyl) acetamide. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Ünver Y, Süleymanoğlu N, Ustabaş R, Bektaş Kİ, Bektaş E, Güler Hİ. 3-(5-(1 H-imidazol-1-yl) pent-1-en-1-yl)-9-ethyl-9 H-carbazole: synthesis, characterization (IR, NMR), DFT, antimicrobial-antioxidant activities and docking study. J Biomol Struct Dyn 2022; 40:12990-13000. [PMID: 34514967 DOI: 10.1080/07391102.2021.1977708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
3-(5-(1H-imidazol-1-yl) pent-1-en-1-yl)-9-ethyl-9H-carbazole called as compound 1 was synthesized and characterized by proton and carbon-13 nuclear magnetic resonance (1H- and 13C- NMR) and Fourier transform infrared (FTIR) spectroscopic methods. Density Functional Theory/Becke, 3-parameter (DFT/B3LYP), for compound 1 were performed with 6-311++G(d,p) method. Optimized geometry, frontier molecular orbitals (HOMO; highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital), IR and NMR parameters of compound 1 were obtained. The evaluations reveal that the calculation results support the experimental results. In addition, the antimicrobial (a microwell dilution method) and antioxidant activities (2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) ferric ion reducing antioxidant power (FRAP) of compound 1 were evaluated. According to the results obtained, it showed higher antimicrobial activity (Minimal inhibition concentration (MIC): 78.12 µg/mL) against B. subtilis subsp. Spizizenii. Morever, molecular docking studies were carried out to investigate the interactions of an antimicrobial agent on some important enzymes played important roles in nucleic acid (Deoxyribo nucleic acid (DNA) synthesis, cell wall synthesis, protein synthesis, and metabolism etc. The compound 1 was strongly bound to tyrosyl-tRNA synthetase enzyme (binding energy: -11.18 and Ki: 6.37 nM) and Beta-Ketoacyl-Acp Synthase III enzyme (binding energy: -10.29 and Ki: 28.47 nM).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yasemin Ünver
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Nevin Süleymanoğlu
- Vocational School of Technical Sciences, Gazi University, Ankara, Turkey
| | - Reşat Ustabaş
- Educational Faculty, Department of Mathematics and Science Education, Ondokuz Mayıs University, Samsun, Turkey
| | - Kadriye İnan Bektaş
- Faculty of Science, Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon, Turkey
| | - Ersan Bektaş
- Espiye Vocational School, Giresun University, Giresun, Turkey
| | - Halil İbrahim Güler
- Faculty of Science, Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
6
|
Quantum computational, spectroscopic and molecular docking studies on 6-amino-3-bromo-2-methylpyridine. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Organically surface engineered mesoporous silica nanoparticles control the release of quercetin by pH stimuli. Sci Rep 2022; 12:20661. [PMID: 36450792 PMCID: PMC9712501 DOI: 10.1038/s41598-022-25095-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Controlling the premature release of hydrophobic drugs like quercetin over physiological conditions remains a challenge motivating the development of smart and responsive drug carriers in recent years. This present work reported a surface modification of mesoporous silica nanoparticles (MSN) by a functional compound having both amines (as a positively charged group) and carboxylic (negatively charged group), namely 4-((2-aminoethyl)amino)-4-oxobut-2-enoic acid (AmEA) prepared via simple mechanochemistry approach. The impact of MSN surface modification on physical, textural, and morphological features was evaluated by TGA, N2 adsorption-desorption, PSA-zeta, SEM, and TEM. The BET surface area of AmEA-modified MSN (MSN-AmEA) was found to be 858.41 m2 g-1 with a pore size of 2.69 nm which could accommodate a high concentration of quercetin 118% higher than MSN. In addition, the colloidal stability of MSN-AmEA was greatly improved as indicated by high zeta potential especially at pH 4 compared to MSN. In contrast to MSN, MSN-AmEA has better in controlling quercetin release triggered by pH, thanks to the presence of the functional groups that have a pose-sensitive interaction hence it may fully control the quercetin release, as elaborated by the DFT study. Therefore, the controlled release of quercetin over MSN-AmEA verified its capability of acting as a smart drug delivery system.
Collapse
|
8
|
Ouakki M, Galai M, Aribou Z, Benzekri Z, Assiri EHE, Dahmani K, Ech-chihbi E, Abousalem AS, Boukhris S, Cherkaoui M. Detailed experimental and computational explorations of pyran derivatives as corrosion inhibitors for mild steel in 1.0 M HCl: Electrochemical/surface studies, DFT modeling, and MC simulation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Krátký M, Novotná E, Stolaříková J, Švarcová M, Vinšová J. Substituted N-phenylitaconamides as inhibitors of mycobacteria and mycobacterial isocitrate lyase. Eur J Pharm Sci 2022; 176:106252. [DOI: 10.1016/j.ejps.2022.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
|
10
|
Kumar R, Kamal R, Kumar V, Parkash J. Bifunctionalization of α,β-unsaturated diaryl ketones into α-aryl-β,β-ditosyloxy ketones: Single crystal XRD, DFT, FMOs, molecular electrostatic potential, hirshfeld surface analysis, and 3D-energy frameworks. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Azougagh O, Essayeh S, Achalhi N, El Idrissi A, Amhamdi H, Loutou M, El Ouardi Y, Salhi A, Abou-Salama M, El Barkany S. New benzyltriethylammonium/urea deep eutectic solvent: Quantum calculation and application to hyrdoxylethylcellulose modification. Carbohydr Polym 2022; 276:118737. [PMID: 34823773 DOI: 10.1016/j.carbpol.2021.118737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022]
Abstract
In this paper, a new deep eutectic solvent (DES) has been successfully synthesized that is based on benzyltriethylammonium bromide as a hydrogen bond acceptor (HBA) and urea as a hydrogen bond donor (HBD). However, its usability in modifying cellulose derivatives, especially acylating hydroxyethylcellulose (HEC) was investigated. The chemical modification (acetylation) of HEC was carried out in BTEAB/urea DES system without any additional conventional solvent or catalyst. However, the proposed structure of acetylated HEC (HECA) was confirmed according to the structural spectra analyses FTIR-ATR, 1H, 13C, and APT-NMR. The crystalline behavior of acetylated and unmodified HEC in the DES system has been evaluated using XRD patterns, where the thermal stability was evaluated basing on the TD-TGA thermograms. Hence, SEM images and EDX spectra were recorded to prove the changes that are expected at the morphological level and elemental profile. Yet, the nanometric sheets aspect was observed. The Functional Density Theory (DFT) was investigated as a useful computational tool to understand mechanism and donor-acceptor interactions. The topological parameters (electron density Laplacian, kinetic energy density, potential energy density, and energy density) at the bond critical points (BCP), between TBEAB and urea, are deducted according to Quantum Bader's theory, and Atoms-in-molecules (AIM). The non-covalent interactions and steric effect in the DES system were studied using the reduced density gradient isosurface (RDG). Theoretical and computational calculations revealed that the H-bonds and the electrostatic coexist, as predominant interactions in the BTEAB-based DES resulting chemical structure, and mechanism formation. The physical interactions between the component entities of DES lead to a new equilibrium that is more stable than that of HBA and HBD in their separate states.
Collapse
Affiliation(s)
- Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco.
| | - Soumya Essayeh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco
| | - Nafea Achalhi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, Mohamed 1st University, 60000 Oujda, Morocco
| | - Abderrahmane El Idrissi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, Mohamed 1st University, 60000 Oujda, Morocco
| | - Hassan Amhamdi
- Applied Chemistry Unit, Sciences and Technologies Faculty, Abdelmalek Essaadi University, 32 003 Al Hoceima, Morocco
| | - Mohamed Loutou
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco
| | - Youssef El Ouardi
- LIMOME Laboratory, Dhar El Mehraz Faculty of Sciences, Sidi Mohamed Ben Abdellah University, B.P. 1796, Atlas, Fes 30000, Morocco; Laboratory of Separation Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta, Finland
| | - Amin Salhi
- Applied Chemistry Unit, Sciences and Technologies Faculty, Abdelmalek Essaadi University, 32 003 Al Hoceima, Morocco
| | - Mohamed Abou-Salama
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco
| | - Soufian El Barkany
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco.
| |
Collapse
|
12
|
Fundamental research on the influence of mercaptan and thioether structure on the solvent extraction of fluid catalytic cracking naphtha. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Ceratonia Siliqua L seeds extract as eco-friendly corrosion inhibitor for carbon steel in 1 M HCl: Characterization, electrochemical, surface analysis, and theoretical studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Shanmugapriya N, Balachandran V, Revathi B, Narayana B, Salian VV, Vanasundari K, Sivakumar C. Quantum chemical calculation, performance of selective antimicrobial activity using molecular docking analysis, RDG and experimental (FT-IR, FT-Raman) investigation of 4-[{2-[3-(4-chlorophenyl)-5-(4-propan-2-yl) phenyl)-4, 5-dihydro- 1H- pyrazol-1-yl]-4-oxo-1, 3- thiazol-5(4H)-ylidene} methyl] benzonitrile. Heliyon 2021; 7:e07634. [PMID: 34381897 PMCID: PMC8339246 DOI: 10.1016/j.heliyon.2021.e07634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
The research received a great deal of worldwide attention due to the nature of interpretation before the experimental process. Based on the systematic process the structure of thiazole -pyrazole compound 4-[{2-[3-(4-chlorophenyl)-5-(4-propan-2-yl) phenyl)-4, 5-dihydro- 1H- pyrazol-1-yl]-4-oxo-1, 3- thiazol-5(4H)-ylidene} methyl] benzonitrile [CPTBN] was investigated. In the first level, the spectral statistics on experimental FT-IR and FT- Raman was reported. At the next level, geometrical parameters was theoretically acquired from density functional theory (DFT) using B3LPY/6-31G and 6-311G basis set. The computed Wavenumber were collected and compared with the experimental data. The vibrational modes were interpreted in terms of potential energy distribution (PED) results. The FMO, MEP, and NBO analysis further validated the electrophilic and nucleophilic interaction in the molecular systems. Two grams-positive bacteria: staphylococcus aureus, Bacillus subtilis and two gram-negative bacteria: Esherichia coli, Pseudomonas aeruginosa was performed for antibacterial activity. Two fungal strain Candida albicans and Aspergillus Niger was carried out against a ligand using anti-fungal activity. The molecular docking analysis explores the antimicrobial and selective potential inhibitory nature of the binding molecule. Besides, RDG and ELF analysis were also performed to show the nature of interactions between the molecule.
Collapse
Affiliation(s)
- N. Shanmugapriya
- Centre for Research, Department of Physics, Arignar Anna Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli, Musiri, 621 211, India
| | - V. Balachandran
- Centre for Research, Department of Physics, Arignar Anna Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli, Musiri, 621 211, India
| | - B. Revathi
- Centre for Research, Department of Physics, Arignar Anna Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli, Musiri, 621 211, India
| | - B. Narayana
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
| | - Vinutha V. Salian
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
| | - K. Vanasundari
- Centre for Research, Department of Physics, Arignar Anna Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli, Musiri, 621 211, India
| | - C. Sivakumar
- Centre for Research, Department of Physics, Arignar Anna Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli, Musiri, 621 211, India
| |
Collapse
|
15
|
Alaoui Mrani S, Ech-chihbi E, Arrousse N, Rais Z, El Hajjaji F, El Abiad C, Radi S, Mabrouki J, Taleb M, Jodeh S. DFT and Electrochemical Investigations on the Corrosion Inhibition of Mild Steel by Novel Schiff’s Base Derivatives in 1 M HCl Solution. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05229-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Molecular structure, spectroscopic, quantum chemical, topological, molecular docking and antimicrobial activity of 3-(4-Chlorophenyl)-5-[4-propan-2-yl) phenyl-4, 5-dihydro-1H-pyrazol-1-yl] (pyridin-4-yl) methanone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Electrochemical, thermodynamic and theoretical studies of some imidazole derivatives compounds as acid corrosion inhibitors for mild steel. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114063] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Synthesis, antioxidant, DNA cleavage and antimicrobial properties of phthalocyanine complexes bearing the poly-hydroxyl groups. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01432-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Xie L, Xiao N, Li L, Xie X, Li Y. Theoretical Insight into the Interaction between Chloramphenicol and Functional Monomer (Methacrylic Acid) in Molecularly Imprinted Polymers. Int J Mol Sci 2020; 21:ijms21114139. [PMID: 32532004 PMCID: PMC7312358 DOI: 10.3390/ijms21114139] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Molecular imprinting technology is a promising method for detecting chloramphenicol (CAP), a broad-spectrum antibiotic with potential toxicity to humans, in animal-derived foods. This work aimed to investigate the interactions between the CAP as a template and functional monomers required for synthesizing efficient molecularly imprinted polymers for recognition and isolation of CAP based on density functional theory. The most suitable monomer, methacrylic acid (MAA), was determined based on interaction energies and Gibbs free energy changes. Further, the reaction sites of CAP and MAA was predicted through the frontier molecular orbitals and molecular electrostatic potentials. Atoms in molecules topology analysis and non-covalent interactions reduced density gradient were applied to investigate different types of non-covalent and inter-atomic interactions. The simulation results showed that CAP was the main electron donor, while MAA was the main electron acceptor. Moreover, the CAP–MAA complex simultaneously involved N-H···O and C=O···H double hydrogen bonds, where the strength of the latter was greater than that of the former. The existence of hydrogen bonds was also confirmed by theoretical and experimental hydrogen nuclear magnetic resonance and Fourier transform infrared spectroscopic analyses. This research can act as an important reference for intermolecular interactions and provide strong theoretical guidance regarding CAP in the synthesis of molecularly imprinted polymers.
Collapse
Affiliation(s)
| | | | - Lu Li
- Correspondence: ; Tel.: +86-13711240878
| | | | | |
Collapse
|
20
|
Synthesis, structural and molecular characterization of 2,2-diphenyl-2H,3H,5H,6H,7H-imidazo[2,1-b][1,3]thiazin-3-one. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Ranjan P, Athar M, Rather H, Vijayakrishna K, Vasita R, Jha PC. Rational design of imidazolium based salts as anthelmintic agents. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Vanasundari K, Balachandran V, Kavimani M, Narayana B. Molecular docking, vibrational, structural, electronic and optical studies of {4 – (2, 6) dichlorophenyl amino 2 – methylidene 4 – oxobutanoic acid and 4- (2, 5)} dichlorophenyl amino 2 – methylidene 4 – oxobutanoic acid – A comparative study. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|