1
|
Zheng Y, Song Z, Huang M, Li C, Nong C, Jiang T, Li Z, Yi Z. Elucidating thyroid hormone transport proteins disruption by nitrophenols through computational and spectroscopic analysis. Biophys Chem 2025; 320-321:107415. [PMID: 39987709 DOI: 10.1016/j.bpc.2025.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Thyroxine (T4), as a type of thyroid hormone (TH), is a key hormone in regulating human metabolism, growth and development, central nervous system functions, and energy balance. It relies on TH transport proteins to reach cells and exert its biological actions. However, the binding of nitrophenol pollutants to TH transport proteins prevents the delivery of thyroid hormones to cells, thereby inhibiting the effects of the hormones. This study combines spectroscopic experiments and computational simulations to explore the mechanism of nitrophenols' interference with TH transport proteins. Detailed information on the quenching mechanism, binding parameters, interaction forces, binding models, and conformational changes of nitrophenols (PNP), chlorinated nitrophenols (CNP), and brominated nitrophenols (BNP) with TH transport proteins is obtained through spectroscopic experiments. Nitrophenols are found to form hydrogen bonds with residues Lys15, Arg378, and Arg381, respectively, thereby displacing T4 at the binding site in the TH transport proteins. With an increasing number of halogen atoms, the affinity of halogenated nitrophenols for TH transport proteins intensifies. Computational simulations are used to further understand the binding modes and binding sites, providing molecular-level insights into the binding of NPs in the cavity of TH transport proteins. Theoretical evidence from molecular docking and molecular dynamics (MD) simulations supports the experimental findings.
Collapse
Affiliation(s)
- Yanhong Zheng
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zeyu Song
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Muwei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Cancan Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Chunke Nong
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Tinghao Jiang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhanji Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China..
| |
Collapse
|
2
|
Medimagh M, Issaoui N, Gatfaoui S, Al-Dossary O, S. Kazachenko A, Marouani H, Wojcik M. Molecular modeling and biological activity analysis of new organic-inorganic hybrid: 2-(3,4-dihydroxyphenyl) ethanaminium nitrate. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2021; 33:101616. [DOI: 10.1016/j.jksus.2021.101616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Zhao L, Pan F, Mehmood A, Zhang H, Ur Rehman A, Li J, Hao S, Wang C. Improved color stability of anthocyanins in the presence of ascorbic acid with the combination of rosmarinic acid and xanthan gum. Food Chem 2021; 351:129317. [PMID: 33636535 DOI: 10.1016/j.foodchem.2021.129317] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
This study investigated the protective effect and mechanism of action of combined use of rosmarinic acid (RA) and xanthan gum (XG) on the stability of anthocyanins (ACNs) in the presence of l-ascorbic acid (pH 3.0). The addition of RA and XG, alone and in combination, significantly enhanced the color stability of ACNs, and the combined use of RA and XG showed the best effect. FTIR, 1H NMR, AFM and computational molecular simulation analyses revealed that the improvement in ACN stability following the combined addition of RA and XG was due to intermolecular interactions such as hydrogen bonding and van der Waals forces. In the ACN-RA-XG ternary complexes, XG had stronger binding interactions with ACNs than RA. Our findings provide a valuable potential to enhance the stability of ACNs in the presence of ascorbic acid with the combined use of RA and XG.
Collapse
Affiliation(s)
- Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Fei Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Huimin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Ashfaq Ur Rehman
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuai Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
4
|
Molecular structure, spectroscopic, quantum chemical, topological, molecular docking and antimicrobial activity of 3-(4-Chlorophenyl)-5-[4-propan-2-yl) phenyl-4, 5-dihydro-1H-pyrazol-1-yl] (pyridin-4-yl) methanone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Zhang W, Feng Z, Yang Y, Sun W, Pooley S, Cao J, Gao Z. Bi-functional hydrogen and coordination bonding surfactant: A novel and promising collector for improving the separation of calcium minerals. J Colloid Interface Sci 2020; 585:787-799. [PMID: 33131784 DOI: 10.1016/j.jcis.2020.10.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 10/23/2022]
Abstract
Mono-functional chelating collectors exhibit limited selectivity in the flotation of minerals. In particular, the selective separation of calcium minerals presents a significant challenge because mono-functional chelating collectors, such as fatty acid, indistinguishably adsorb onto mineral surfaces by coordinating with the same metal cation (Ca2+). Thus, there is an urgent need to develop new-mode-functional collectors to separate calcium minerals and a need to understand the underlying chemoselectivity. Given the difference of the hydrogen bonding ability of anions with fluorite, calcite and scheelite surfaces, the introduction of additional hydrogen bonding functional groups into collector molecules is a novel strategy to improve selectivity. In this study, a hydrogen and coordination bonding (bi-functional) collector, 2-cyano-N-ethylcarbamoyl acetamide (CEA) was developed, which could form coordination bonds with the Ca2+ ions (by carbonyl groups) and hydrogen bonds with the anions (by amino groups) on calcium mineral surfaces. The results of flotation tests showed that CEA can selectively separate fluorite and calcite from scheelite at pH 7. The promising selectivity of CEA lies in both the electrical properties and the anions' hydrogen bonding ability with the three calcium minerals. The negatively charged scheelite surfaces are not conducive to coordination bonding with CEA while the positively charged fluorite and calcite surfaces are. Besides, the hydrogen bonding ability of fluorite (F-) and calcite (CO32-) with carbamido in CEA is higher than that of scheelite (WO42-), and this also plays an essential role. This coordination and hydrogen bonding based surfactant design protocol has a great potential in the development of tail-made collectors/depressants for the separation of other oxidized minerals.
Collapse
Affiliation(s)
- Wanjia Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, China
| | - Zhitao Feng
- Department of Chemistry, University of California-Davis, Davis, United States
| | - Yuhang Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, China
| | - Stephen Pooley
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, China
| | - Jian Cao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, China.
| | - Zhiyong Gao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, China.
| |
Collapse
|
6
|
Abstract
Abstract
Geometry optimization of gemcitabine was carried out by DFT with B3LYP/6-311++G(d,p) level in the gas phase. Chemical activity (electronegativity, electrophilicity, hardness, chemical softness and chemical potential) was predicted with the help of HOMO-LUMO energy values. Experimental FT-IR was recorded and computed values are also analyzed using the same level of DFT. A complete vibrational spectrum was made to analyze the potential energy distribution (PED). Stability of the molecule arising from the hyper-conjugative interaction was analyzed by the natural bond orbital (NBO). The molecular electrostatic potential map was used to detect the possible electrophilic and nucleophilic sites in the molecule. Nonisothermal decomposition of gemcitabine was carried out in an air atmosphere. The two decomposition steps of the molecule were analyzed kinetically by linear and nonlinear methods for elucidation of the kinetic triplet (Ea
, ln A and f(α)) of the decomposition processes. Powder X-ray diffraction indicated that gemcitabine crystallizes in the monoclinic system (SG P2/m). Molecular docking studies were also described.
Collapse
|