1
|
Fesenko AA, Grigoriev MS, Shutalev AD. Effective self-assembly of 21- and 14-membered azamacrocycles via condition-controlled cyclotrimerization or cyclodimerization of different thiosemicarbazide-based precursors. Org Biomol Chem 2024; 22:9078-9093. [PMID: 39435579 DOI: 10.1039/d4ob01384k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A preparative synthesis of previously unknown 21- and 14-membered azamacrocycles via acid-promoted cyclotrimerization or cyclodimerization of three readily available precursors, namely, 1-amino-6-hydroxy-4,6-dimethylhexahydropyrimidine-2-thione, 4-(4-oxopent-2-yl)thiosemicarbazide hydrazone, and 5,7-dimethyl-1,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione has been developed. A dramatic dependence of the selectivity of macrocyclization on the reaction conditions is demonstrated. The thermodynamic aspects of the reactions are discussed based on experimental data and DFT calculation results. Plausible pathways for the formation of macrocycles are proposed.
Collapse
Affiliation(s)
- Anastasia A Fesenko
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Ave., 119071 Moscow, Russian Federation
| | - Mikhail S Grigoriev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Ave., 119071 Moscow, Russian Federation
| | - Anatoly D Shutalev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation.
| |
Collapse
|
2
|
Besleaga I, Fesenko AA, Paul A, Šljukić B, Rapta P, Pombeiro AJL, Shutalev AD, Arion VB. Nickel(II) complexes with 14-membered bis-thiosemicarbazide and bis-isothiosemicarbazide ligands: synthesis, characterization and catalysis of oxygen evolution reaction. Dalton Trans 2024; 53:15826-15841. [PMID: 39189403 PMCID: PMC11375789 DOI: 10.1039/d4dt02182g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Design and development of novel, low-cost and efficient electrocatalysts for oxygen evolution reaction (OER) in alkaline media is crucial for lowering the reaction overpotential and thus decreasing the energy input during the water electrolysis process. Herein, we present the synthesis of new 14-membered bis-thiosemicarbazide and bis-isothiosemicarbazide macrocycles and their nickel(II) complexes characterized by spectroscopic techniques (1H and 13C NMR, IR, UV-vis), electrospray ionization mass spectrometry, single crystal X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) and cyclic voltammetry. Finally, the activity of nickel(II) complexes towards OER is reported. NiIILSEt delivered a current density of 10 mA cm-2 at the lowest overpotential of 350 mV with the lowest Tafel slope of 93 mV dec-1. The high performance of NiIILSEt might be attributed to its high surface area and thus abundant active sites with the observed low charge-transfer resistance enabling the effective current flow through the electrocatalyst. Square-planar coordination geometry and increment in Ni oxidation state are believed to favor its OER performance. Beside high activity towards OER, NiIILSEt demonstrated excellent long-term stability with continuous operation, advocating its possible application in commercial systems.
Collapse
Affiliation(s)
- Iuliana Besleaga
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria.
| | - Anastasia A Fesenko
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Ave., 119071 Moscow, Russian Federation
| | - Anup Paul
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Biljana Šljukić
- Center of Physics and Engineering of Advanced Materials, Laboratory of Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Anatoly D Shutalev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation.
| | - Vladimir B Arion
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria.
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| |
Collapse
|
3
|
Fesenko AA, Shutalev AD. Unprecedented synthesis of a 14-membered hexaazamacrocycle. Beilstein J Org Chem 2023; 19:1728-1740. [PMID: 38025087 PMCID: PMC10667714 DOI: 10.3762/bjoc.19.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
The transformation of 3-[(ethoxymethylene)amino]-1-methyl-1H-pyrazole-4-carbonitrile into the 14-membered macrocycle, 2,10-dimethyl-2,8,10,16-tetrahydrodipyrazolo[3,4-e:3',4'-l][1,2,4,8,9,11]hexaazacyclotetradecine-4,12-diamine, by the reaction with excess hydrazine under various conditions was studied in detail. The reaction proceeded through the initial formation of 4-imino-2-methyl-2,4-dihydro-5H-pyrazolo[3,4-d]pyrimidin-5-amine followed by dimerization to give the final macrocycle. A convenient synthesis of the latter starting from 4-imino-2-methyl-2,4-dihydro-5H-pyrazolo[3,4-d]pyrimidin-5-amine was developed. A plausible pathway for the macrocycle self-assembly is discussed. Some features of the structure and reactivity of the obtained macrocycle are outlined.
Collapse
Affiliation(s)
- Anastasia A Fesenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation
| | - Anatoly D Shutalev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation
| |
Collapse
|
4
|
Fesenko A, Grigoriev MS, Arion VB, Shutalev AD. Different Modes of Acid-Promoted Cyclooligomerization of 4-(4-Thiosemicarbazido)butan-2-one Hydrazone: 14-Membered versus 28-Membered Polyazamacrocycle Formation. J Org Chem 2022; 87:15722-15731. [PMID: 36383744 PMCID: PMC9724087 DOI: 10.1021/acs.joc.2c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 11/17/2022]
Abstract
Unprecedented self-assembly of a novel 14-membered cyclic bis-thiosemicarbazone or/and a 28-membered cyclic tetrakis-thiosemicarbazone upon acid-promoted cyclooligomerization of 4-(4-thiosemicarbazido)butan-2-one hydrazone has been discovered. A thorough study of the influence of various factors on the direction of macrocyclization provided the optimal conditions for the highly selective formation of each of the macrocycles in excellent yields. Plausible pathways for macrocyclizations have been discussed. The macrocycle precursor was prepared by the reaction of readily available 4-isothiocyanatobutan-2-one with an excess of hydrazine.
Collapse
Affiliation(s)
- Anastasia
A. Fesenko
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russian Federation
| | - Mikhail S. Grigoriev
- Frumkin
Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Avenue, Bldg 4, 119071 Moscow, Russian Federation
| | - Vladimir B. Arion
- Institute
of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Anatoly D. Shutalev
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russian Federation
| |
Collapse
|
5
|
Fesenko AA, Shutalev AD. A general and stereoselective approach to 14-membered cyclic bis-semicarbazones involving BF 3-catalyzed amidoalkylation of 2-(trimethylsilyloxy)propene. Org Biomol Chem 2022; 20:4569-4588. [PMID: 35593300 DOI: 10.1039/d2ob00644h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A general and stereoselective five-step approach to 14-membered cyclic bis-semicarbazones, 5,12-diaryl-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-diones, starting from aldehyde semicarbazones has been developed. The key intermediates, 4-(3-oxobut-1-yl)semicarbazones, were prepared by BF3-catalyzed amidoalkylation of 2-(trimethylsilyloxy)propene with 4-[(aryl)(methoxy)methyl]- or 4-[(aryl)(tosyl)methyl]semicarbazones. Treatment of these intermediates with excess of hydrazine gave hydrazones of 4-(3-oxobut-1-yl)semicarbazones or 4-(3-oxobut-1-yl)semicarbazides, which in the presence of TsOH were converted into the target macrocycles. All steps of this approach could be scaled up easily to the multi-gram level.
Collapse
Affiliation(s)
- Anastasia A Fesenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation.
| | - Anatoly D Shutalev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation.
| |
Collapse
|
6
|
Phenylisoxazole-3/5-Carbaldehyde Isonicotinylhydrazone Derivatives: Synthesis, Characterization, and Antitubercular Activity. J CHEM-NY 2021. [DOI: 10.1155/2021/6014093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eight new phenylisoxazole isoniazid derivatives, 3-(2′-fluorophenyl)isoxazole-5-carbaldehyde isonicotinylhydrazone (1), 3-(2′-methoxyphenyl)isoxazole-5-carbaldehyde isonicotinylhydrazone (2), 3-(2′-chlorophenyl)isoxazole-5-carbaldehyde isonicotinylhydrazone (3), 3-(3′-clorophenyl)isoxazole-5-carbaldehyde isonicotinylhydrazone (4), 3-(4′-bromophenyl)isoxazole-5-carbaldehyde isonicotinylhydrazone (5), 5-(4′-methoxiphenyl)isoxazole-3-carbaldehyde isonicotinylhydrazone (6), 5-(4′-methylphenyl)isoxazole-3-carbaldehyde isonicotinylhydrazone (7), and 5-(4′-clorophenyl)isoxazole-3-carbaldehyde isonicotinylhydrazone (8), have been synthesized and characterized by FT-IR, 1H-NMR, 13C-NMR, and mass spectral data. The 2D NMR (1H-1H NOESY) analysis of 1 and 2 confirmed that these compounds in acetone-d6 are in the trans(E) isomeric form. This evidence is supported by computational calculations which were performed for compounds 1–8, using DFT/B3LYP level with the 6-311++G(d,p) basis set. The in vitro antituberculous activity of all the synthesized compounds was determined against the Mycobacterium tuberculosis standard strains: sensitive H37Rv (ATCC-27294) and resistant TB DM97. All the compounds exhibited moderate bioactivity (MIC = 0.34–0.41 μM) with respect to the isoniazid drug (MIC = 0.91 μM) against the H37Rv sensitive strain. Compounds 6 (X = 4′-OCH3) and 7 (X = 4′-CH3) with MIC values of 12.41 and 13.06 μM, respectively, were about two times more cytotoxic, compared with isoniazid, against the resistant strain TB DM97.
Collapse
|
7
|
Dobrov A, Fesenko A, Yankov A, Stepanenko I, Darvasiová D, Breza M, Rapta P, Martins LMDRS, Pombeiro AJL, Shutalev A, Arion VB. Nickel(II), Copper(II) and Palladium(II) Complexes with Bis-Semicarbazide Hexaazamacrocycles: Redox-Noninnocent Behavior and Catalytic Activity in Oxidation and C-C Coupling Reactions. Inorg Chem 2020; 59:10650-10664. [PMID: 32649194 DOI: 10.1021/acs.inorgchem.0c01119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nickel(II), copper(II), and palladium(II) complexes MLH, where M = Ni (1), Cu (2), Pd (3), and MLOMe, where M = Ni (4), Cu (5), Pd (6), have been prepared by reactions of NiCl2·6H2O, Cu(OAc)2·H2O, and PdCl2(MeCN)2 with 14-membered bis-semicarbazide hexaazamacrocycles H2LH and H2LOMe in dimethylformamide (DMF). The compounds were characterized by elemental analysis, ESI mass spectrometry, IR, UV-vis, and 1D (1H, 13C) and 2D (1H-1H COSY, 1H-1H TOCSY, 1H-1H NOESY, 1H-13C HSQC, 1H-13C HMBC) NMR spectra (1, 3, 4, and 6), and X-ray diffraction (2, 4-6). The complexes with MIIN4 coordination environment have S = 0, 1/2, 0 ground states for Ni, Cu, and Pd, respectively. The electrochemical behavior of 1-6 was investigated in detail. The electronic structures of 1e-oxidized species were studied by EPR, UV-vis-NIR spectroelectrochemistry, and DFT calculations, indicating the redox-noninnocent behavior of the ligands. Compounds 1-6 were tested in the oxidation of styrene and C-C coupling (Henry and Knoevenagel condensations). Compounds 2 and 5 selectively catalyze the microwave-assisted oxidation of neat styrene to benzaldehyde (up to 88% yield), whereas the 1 and 4 catalytic systems afforded up to 99% β-nitroethanol yield with an appreciable diastereoselectivity toward the formation of the anti isomer.
Collapse
Affiliation(s)
- Anatolie Dobrov
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Altanstraße 14, 1090 Wien, Austria
| | - Anastasia Fesenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation
| | - Alexander Yankov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation
| | - Iryna Stepanenko
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Denisa Darvasiová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | - Luísa M D R S Martins
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Anatoly Shutalev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation
| | - Vladimir B Arion
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
8
|
Indole-3-carbaldehyde Semicarbazone Derivatives: Synthesis, Characterization, and Antibacterial Activities. J CHEM-NY 2020. [DOI: 10.1155/2020/7157281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Four indole-3-carbaldehyde semicarbazone derivatives, 2-((5-bromo-1H-indol-3-yl)methylene)hydrazinecarboxamide (1), 2-((5-chloro-1H-indol-3-yl)methylene)hydrazinecarboxamide (2), 2-((5-methoxy-1H-indol-3-yl)methylene)hydrazinecarboxamide (3), and 2-((4-nitro-1H-indol-3-yl)methylene)hydrazinecarboxamide (4) were synthesized and characterized by ESI-MS and spectroscopic (FT-IR, 1H NMR, and 13C NMR) techniques. The two-dimensional NMR (in acetone-d6) spectral data revealed that the molecules 1 and 2 in solution are in the cisE isomeric form. This evidence is supported by DFT calculations at the B3LYP/6-311++G(d,p) level of theory where it was shown that the corresponding most stable conformers of the synthesized compounds have a cisE geometrical configuration, in both the gas and liquid (acetone and DMSO) phases. The in vitro antibacterial activity of compounds 1–4 was determined against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacteria. Among all the tested semicarbazones, 1 and 2 exhibited similar inhibitory activities against Staphylococcus aureus (MIC = 100 and 150 μg/mL, respectively) and Bacillus subtilis (MIC = 100 and 150 μg/mL, respectively). On the other hand, 3 and 4 were relatively less active against the tested bacterial strains compared with 1, 2, and tetracycline.
Collapse
|