1
|
AbouElleef EM, Saad RA, Diab MA, El-Zahed MM, El-Sonbati AZ, Morgan SM. Synthesis, characterization, biological evaluation and molecular docking of a Schiff base ligand and its metal complexes. Biometals 2025; 38:935-963. [PMID: 40366547 DOI: 10.1007/s10534-025-00688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
Condensation of 2,3-diaminopyridine with 2,4-dihyrodybenzaldehyde yielded a 4,4'-[(1E,1 ~ E)-(pyridine-2,3-diyl)bis(azanylylidene)]bis(methanylylidene)bis(benzene-1,3-diol) monobasic tridentate Schiff base ligand (HL) with an ONN donor sequence. Elemental analyses, conductivity tests, magnetic susceptibility data, FT-IR, UV-vis spectra, x-ray diffraction, and mass spectrum data of the ligand and its complexes were used for the characterization of the structures. Computational HF/3-21G calculations were performed to optimize their geometrical structures and assess their HOMO-LUMO energy gaps. The low molar conductance of the complexes indicates that they are not electrolytic. From the spectrophotometric and gravimetric analyses, the complexes (2-4) are in the ratio of 1:2, while complexes (1 & 5) (1:1) metal to ligand. 2,3-Diaminopyridine, 2,4-dihydroxybenzaldehyde, ligand (HL) and its complexes were screened for antibacterial and antifungal activities against some bacterial (Enterococcus faecalis, Salmonella typhi, and Staphylococcus epidermidis) and fungal isolates (Aspergillus flavus, Alternaria solani, and Candida albicans). The result reveals that 2,4-dihyrodybenzaldehyde has the strongest antibacterial activity among the other compounds followed by Mn(II) complex. The antimicrobial activity increases by increasing the compound concentration. To assess the inhibitory impact of ligand and its complexes on binding sites of B. cereus (PDB ID: 1FEZ), S. epidermidis (PDB ID: 3KP7), E. faecalis (PDB ID: 5V5U) and S. typhi (PDB ID: 5V2W) proteins, molecular modeling has been implemented offer a fresh concept for medication design. Molecular docking studies confirmed strong binding interactions between the metal complexes and bacterial proteins, validating their biological potential. These findings demonstrate the promising antimicrobial properties of Schiff base metal complexes, making them potential candidates for pharmaceutical and medicinal applications.
Collapse
Affiliation(s)
- Elsayed M AbouElleef
- Basic Sciences Department, Delta Higher Institute for Engineering and Technology, Mansoura, 35681, Dakhlia, Egypt.
| | - Rania A Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - M A Diab
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - M M El-Zahed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - A Z El-Sonbati
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Sh M Morgan
- Environmental Monitoring Laboratory, Ministry of Health, Port Said, Egypt
- Health Technical Institute, Ministry of Health, Port Said, Egypt
| |
Collapse
|
2
|
Sindhu I, Singh A. Nitro Substituted Co(II), Ni(II) and Cu(II) Schiff Base Metal complexes: design, spectral analysis, antimicrobial and in-silico molecular docking investigation. Biometals 2025; 38:297-320. [PMID: 39714739 DOI: 10.1007/s10534-024-00655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
The Schiff base metal complexes containing the transition metal ions Co(II), Ni(II) and Cu(II) were synthesized using their nitrate and acetate salts. An octahedral environment encircling metal complexes has been demonstrated by the findings of multiple spectroscopic approaches that were employed to demonstrate the structure of the metal complexes. The Coats-Redfern method of thermal analysis was employed to carry out the kinetic and thermodynamic calculations. The crystalline size of ligand was 36.67 nm and for the metal complexes it varies from 22.43 to 49.21 nm. To assess the biological effectiveness of these compounds, molecular docking studies were emanated. The docking binding studies were established through the interaction of metal complexes with human cancer protein, such as 3W2S (ovarian cancer) and 4ZVM (breast cancer). The results exemplified that the complexes are more efficient towards ovarian cancer (3W2S) in contrast to breast cancer (4ZVM) while among complexes, the nickel acetate (- 7.0 kcal/mol) and copper acetate (- 7.9 kcal/mol) complex were more efficient towards 4ZVM and 3W2S receptors respectively. Additionally, DNA binding studies against 1BNA receptor protein was examined from docking evaluations and the finding concludes the highest efficiency of nickel (- 8.1 kcal/mol) complexes. Further, a number of bacterial and fungal strains have been implemented in antimicrobial examinations to assess the compounds effectualness. The results untangled the extreme potential of copper nitrate (0.0051-0.0102 µmol/mL) and copper acetate (0.0051-0.0103 µmol/mL) complexes against all bacterial and fungal strains except for S. aureus in which nickel acetate proved out to be highly competent.
Collapse
Affiliation(s)
- Indu Sindhu
- Department of Chemistry, Baba Mastnath University, Asthal Bohar, Rohtak, 124021, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Asthal Bohar, Rohtak, 124021, India.
| |
Collapse
|
3
|
Mohamed Nasar N, Samuel M, Jayaraman P, Selvaraj FSS, Raman N. Theoretical and experimental investigation of mixed-ligand metal(II) Schiff base complexes using maleic acid as the auxiliary ligand. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-21. [PMID: 39365845 DOI: 10.1080/15257770.2024.2410954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
This work is focused on the synthesis of several transition metal complexes [ML(MA)], where M = Copper (II), Zinc (II), Cobalt (II) and Nickel (II), MA = maleic acid and L = Schiff base generated from benzene-1,2-diamine [o-phenylenediamine] and 4-chlorobenzaldehyde. The characterization using Fourier-Transform Infrared, Nuclear Magnetic Resonance spectroscopy, Ultraviolet-Visible spectra, Mass, Electro Paramagnetic Resonance and elemental analysis confirm the square planar geometry of the complexes. The in vitro antimicrobial potential of the complexes has been tested by the broth dilution method and the antioxidant method has been done by free radical scavenging analysis. The in vitro methods reveal the outstanding biological characteristics of the copper complexes. The molecular structure of the ligand and its metal (II) complexes has been optimized using Density Functional Theory studies performed by the Gaussian-09 software and their parameters have been discussed. Natural Bond Orbital and Frontier Molecular Orbital analyses have assessed the presence of a metal-ligand bond in complexes. In addition, molecular docking studies have also been performed on antiviral activity of all the complexes using a viral protein and their interacting amino acids.
Collapse
Affiliation(s)
| | - Michael Samuel
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Porkodi Jayaraman
- Post Graduate and Research Department of Chemistry, The Standard Fireworks Rajaratnam College for Women (Autonomous), Sivakasi, India
| | | | - Natarajan Raman
- Research Department of Chemistry, VHNSN College (Autonomous), Madurai Kamaraj University, Madurai, India
| |
Collapse
|
4
|
Ibrahim S, Naik N, Shivamallu C, Raghavendra H, Shati AA, Alfaifi MY, Elbehairi SEI, Amachawadi RG, Kollur SP. Synthesis, structure, and in vitro biological studies of benzothiazole based Schiff base ligand and its binary and ternary Co(III) and Ni(II) complexes. Inorganica Chim Acta 2024; 559:121792. [DOI: 10.1016/j.ica.2023.121792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|
5
|
Farhan N, Al-Maleki AR, Sarih NM, Yahya R. Synthesis and evaluation of antibacterial activity of transition metal-oleoyl amide complexes. Bioorg Chem 2023; 140:106786. [PMID: 37586131 DOI: 10.1016/j.bioorg.2023.106786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Recent studies show that some metal ions, injure microbial cells in various ways due to membrane breakdown, protein malfunction, and oxidative stress. Metal complexes are suited for creating novel antibacterial medications due to their distinct mechanisms of action and the variety of three-dimensional geometries they can acquire. In this Perspective, the present study focused on new antibacterial strategies based on metal oleoyl amide complexes. Thus, oleoyl amides ligand (fatty hydroxamic acid and fatty hydrazide hydrate) with the transition metal ions named Ag (I), Co (II), Cu (II), Ni (II) and Sn (II) complexes were successfully synthesized in this study. The metals- oleoyl amide were characterized using elemental analysis, and fourier transforms infrared (FTIR) spectroscopy. The antibacterial effect of metals- oleoyl amide complexes was investigated for Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) by analysing minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC), and scanning electron microscopy (SEM). The results showed that metal-oleoyl amide complexes have high antibacterial activity at low concentrations. This study inferred that metal oleoyl amide complexes could be utilised as a promising therapeutic antibacterial agent.
Collapse
Affiliation(s)
- Nesrain Farhan
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Anis Rageh Al-Maleki
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Rosiyah Yahya
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Devi P, Singh K, Kumar B, Kumari Singh J. Synthesis, spectroscopic, antimicrobial and in vitro anticancer activity of Co+2, Ni+2, Cu+2 and Zn+2 metal complexes with novel Schiff base. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Gayathri P, Ravi S, Karthikeyan S, Pannipara M, Al-Sehemi AG, Moon D, Anthony SP. Synthesis of ESIPT fluorophores with two intramolecular H-bonding functionalities: Reversible mechanofluorochromism and conformation controlled solid state fluorescence efficiency. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Polymer complexes: LXXX—characterization, DNA cleavage properties, antimicrobial activity and molecular docking studies of transition metal complexes of Schiff base. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Molecular docking, Synthesis and Antimicrobial Evaluation of Metal Complexes with Schiff Base. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Kalaiarasi G, Senthilrajkapoor P, Indumathy R. Various coordination behavior of coumarin appended Schiff bases towards Ruthenium(II) ion: Synthesis, spectral characterization and biological evaluation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Choudhary VK, Mandhan K, Dash D, Bhardwaj S, Kumari M, Sharma N. Density functional theory studies on molecular geometry, spectroscopy, HOMO-LUMO and reactivity descriptors of titanium(IV) and oxidozirconium(IV) complexes of phenylacetohydroxamic acid. J Comput Chem 2022; 43:2060-2071. [PMID: 36165982 DOI: 10.1002/jcc.27004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 11/11/2022]
Abstract
The molecular geometry of new titanium(IV) and oxidozirconium(IV) phenylacetohydroxamate complexes [TiCl2 (L1)2 ] (I) and [ZrO(L1)2 ] (II) (where L1 = Potassium phenylacetohydroxamate = C6 H5 CH2 CONHOK) computed by B3LYP/6-311++G(d,p) method has shown these to be distorted octahedral and square pyramidal, respectively. A comparison of computed characteristic bond lengths (CO, CN, and NO) of complexes with that of free ligand has shown chelation through carbonyl and hydroxamic oxygen atoms (O, O coordination). The TiO/ZrO bond lengths in complexes are suggestive of weak coordination through (carbonyl CO) and strong covalent (hydroxamic NO) bonding of the ligand. The magnitude of ClTiCl bond angle involving two chloride atoms is suggestive of cis-conformation at titanium metal in (I). The thermodynamic parameters Gibbs free energy, enthalpy, entropy, nuclear internal energy, constant volume heat capacity, and internal energy of ligand and complexes have been computed. From the energies of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), the global reactivity descriptors such as ionization potential (IP), electron affinity (EA), chemical potential (μ), hardness (η), softness (S), electronegativity (χ), electrophilicity index (ω), and dipole moment have been calculated. The computed vibrational frequencies, 1 H and 13 C NMR spectra have substantiated the molecular structure of complexes. The thermal behavior of complexes has been studied by thermogravimetric techniques (TGA, DTG, and DTA) in N2 atmosphere has shown complexes are thermally stable.
Collapse
Affiliation(s)
| | - Kanika Mandhan
- Department of Chemistry, IEC University Baddi, Solan, Himachal Pradesh, India
| | - Dibyajit Dash
- Department of Chemistry, Sant Longowal Institute of Engineering & Technology, Longowal, Sangrur, Punjab, India
| | - Sachin Bhardwaj
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India
| | - Meena Kumari
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India
| | - Neeraj Sharma
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India
| |
Collapse
|
12
|
Kaya Y, Erçağ A, Kaya S, Katin KP, Atilla D. New mixed‐ligand iron(III) complexes containing thiocarbohydrazones: Preparation, characterization, and chemical reactivity analysis through theoretical calculations. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yeliz Kaya
- Inorganic Chemistry Division, Department of Chemistry, Faculty of Engineering Istanbul University‐Cerrahpaşa Istanbul Turkey
| | - Ayşe Erçağ
- Inorganic Chemistry Division, Department of Chemistry, Faculty of Engineering Istanbul University‐Cerrahpaşa Istanbul Turkey
| | - Savaş Kaya
- Health Services Vocational School, Department of Pharmacy Sivas Cumhuriyet University Sivas Turkey
| | | | - Devrim Atilla
- Department of Chemistry Gebze Technical University Kocaeli Turkey
| |
Collapse
|
13
|
Omar (Al-Ahdal) ZT, Jadhav S, Shejul S, Chavan P, Pathrikar R, Rai M. Synthesis, Magnetic Moment, Antibacterial, and Antifungal Studies of INH Incorporating Schiff Base Metal Complexes. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2077776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Shivaji Jadhav
- Department of Chemistry, Tarai College of Arts and Science, Aurangabad, Maharashtra, India
| | - Sumit Shejul
- Department of Chemistry, Dr. Rafiq Zakaria College for Women, Aurangabad, Maharashtra, India
| | - Pravin Chavan
- Department of Chemistry, Doshi Vakil College, Goregaon, Maharashtra, India
| | - Rashmi Pathrikar
- Department of Chemistry, Rajshri Shahu College, Aurangabad, Maharashtra, India
| | - Megha Rai
- Department of Chemistry, Dr. Rafiq Zakaria College for Women, Aurangabad, Maharashtra, India
| |
Collapse
|
14
|
Ibrahium HA, Atia BM, Awwad NS, Nayl AA, Radwan HA, Gado MA. Efficient preparation of phosphazene chitosan derivatives and its applications for the adsorption of molybdenum from spent hydrodesulfurization catalyst. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2059508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hala. A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Semi Pilot, Nuclear Materials Authority, Cairo, Egypt
| | - Bahig M. Atia
- Department of Geology Isotopes, Nuclear Materials Authority, Cairo, Egypt
| | - Nasser. S. Awwad
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - A. A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Hend A. Radwan
- Department of Geology Isotopes, Nuclear Materials Authority, Cairo, Egypt
| | - Mohamed A. Gado
- Department of Geology Isotopes, Nuclear Materials Authority, Cairo, Egypt
| |
Collapse
|
15
|
Liu L, Lu Y, Liao L, Xiao X, Nie C. Theoretical Unravelling the Complexation and Separation of Uranyl‐ligand Complexes towards Chiral R/S‐Profenofos. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Linfeng Liu
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Yao Lu
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Lifu Liao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Xilin Xiao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Changming Nie
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| |
Collapse
|
16
|
Synthesis, theoretical study, molecular docking and biological activity of nano tridentate (E)-2-((3-hydoxyphenyl)methyl)phenol metal complexes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
El-Sonbati AZ, Diab MA, Abou-Dobara MI, Eldesoky AM, Issa HR. Synthesis, characterization, electrochemical studies and antimicrobial activities of metal complexes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02354-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
El‐Sonbati AZ, Diab MA, El‐Sayed AK, Abou‐Dobara MI, Gafer AAF. Synthesis, characterization, molecular docking, DNA cleavage properties and antimicrobial activity studies of mixed ligand complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- A. Z. El‐Sonbati
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| | - M. A. Diab
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| | - A. K. El‐Sayed
- Botany and Microbiology Department, Faculty of Science Damietta University Damietta Egypt
| | - M. I. Abou‐Dobara
- Botany and Microbiology Department, Faculty of Science Damietta University Damietta Egypt
| | - A. A. F. Gafer
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| |
Collapse
|
19
|
Daravath S, Rambabu A, Ganji N, Ramesh G, Anantha Lakshmi P, Shivaraj. Spectroscopic, quantum chemical calculations, antioxidant, anticancer, antimicrobial, DNA binding and photo physical properties of bioactive Cu(II) complexes obtained from trifluoromethoxy aniline Schiff bases. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
El‐Sonbati AZ, Diab MA, El‐Sayed AK, Abou‐Dobara MI, El‐Sayad SA. Synthesis, characterization, molecular docking, biological activity and DNA cleavage studies of Cu (II), Co (II), Ni (II), Mn (II) and Cd (II) Schiff base complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. Z. El‐Sonbati
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| | - M. A. Diab
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| | - A. K. El‐Sayed
- Botany and Microbiology Department, Faculty of Science Damietta University Damietta Egypt
| | - M. I. Abou‐Dobara
- Botany and Microbiology Department, Faculty of Science Damietta University Damietta Egypt
| | - S. A. El‐Sayad
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| |
Collapse
|
21
|
Parvarinezhad S, Salehi M, Eshaghi Malekshah R, Kubicki M, Khaleghian A. Synthesis, characterization, spectral studies two new transition metal complexes derived from pyrazolone by theoretical studies, and investigate anti‐proliferative activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Mehdi Salehi
- Department of Chemistry, Faculty of Science Semnan University Semnan Iran
| | | | - Maciej Kubicki
- Department of Chemistry Adam Mickiewicz University Poznan Poland
| | - Ali Khaleghian
- Faculty of Medicine, Biochemistry Department Semnan University of Medical Sciences Semnan Iran
| |
Collapse
|
22
|
El-Sonbati A, El-Mogazy M, Nozha S, Diab M, Abou-Dobara M, Eldesoky A, Morgan S. Mixed ligand transition metal(II) complexes: Characterization, spectral, electrochemical studies, molecular docking and bacteriological application. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Parvarinezhad S, Salehi M, Kubicki M, Khaleghian A. Unprecedented formation of a
μ
‐oxobridged dimeric copper (II) complex: Evaluation of structural, spectroscopic, and electronic properties by using theoretical studies and investigations biological activity studies of new Schiff bases derived from pyrazolone. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Mehdi Salehi
- Department of Chemistry, Faculty of Science Semnan University Semnan Iran
| | - Maciej Kubicki
- Department of Chemistry Adam Mickiewicz University Poznan Poland
| | - Ali Khaleghian
- Faculty of Medicine, Biochemistry Department Semnan University of Medical Sciences Semnan Iran
| |
Collapse
|
24
|
Wang H, Liu R, Wang H, Hu B, Qiu M. High effective enrichment of U(VI) from aqueous solutions on versatile crystalline carbohydrate polymer-functionalized graphene oxide. Dalton Trans 2021; 50:14009-14017. [PMID: 34546242 DOI: 10.1039/d1dt02497c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The removal of uranium on various sorbents has been widely employed in recent times. However, the limited sorption capacities of these sorbents inhibit the actual application of the radionuclide in actual environments. The development of a novel material with high sorption capacity and superior regeneration for the removal of uranium is highly desirable. Therefore, a versatile class of crystalline carbohydrate polymers (COF) was prepared from organic compounds. Moreover, COF-functionalized graphene oxide (COF/GO) was synthesized and tested for the removal of U(VI) from aqueous solutions. The batch characterization showed that COF was vertically oriented on the surface of GO using diboronic acid as nucleation sites. The maximum removal capacity of U(VI) on COF/GO reached 117.67 mg g-1, and was attributed to a huge void ratio and various oxygen-bearing functional groups. In addition, the inner-sphere surface-complexation dominated the U(VI) removal, and the adsorption mechanism of inner-sphere surface-complexation was transferred into surface precipitation with increasing reaction time. COF/GO can be converted into conductive carbon and reduced GO (C/rGO) nanocomposite, which has high specific capacitance. These results suggested that GO-based materials can be considered as promising candidates for the enrichment of U(VI) and energy storage.
Collapse
Affiliation(s)
- Hai Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, P.R. China.
| | - Renrong Liu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, P.R. China.
| | - Huifang Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, P.R. China.
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, P.R. China.
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, P.R. China.
| |
Collapse
|
25
|
Santiago PHDO, Duarte EDA, Nascimento ÉCM, Martins JBL, Castro MS, Gatto CC. A binuclear copper(II) complex based on hydrazone ligand: Characterization, molecular docking, and theoretical and antimicrobial investigation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pedro H. de O. Santiago
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB), Campus Universitário Darcy Ribeiro Brasília Brazil
| | - Eduardo de A. Duarte
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB), Campus Universitário Darcy Ribeiro Brasília Brazil
| | - Érica C. M. Nascimento
- Laboratory of Computational Chemistry University of Brasilia (IQ‐UnB), Campus Universitário Darcy Ribeiro Brasília Brazil
| | - João B. L. Martins
- Laboratory of Computational Chemistry University of Brasilia (IQ‐UnB), Campus Universitário Darcy Ribeiro Brasília Brazil
| | - Mariana S. Castro
- Laboratory of Toxinology, Institute of Biology University of Brasília, Campus Universitário Darcy Ribeiro Brasília Brazil
| | - Claudia C. Gatto
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB), Campus Universitário Darcy Ribeiro Brasília Brazil
| |
Collapse
|
26
|
Mubarak A, Abu Ali H, Metani M. Two novel Cu (II) levofloxacin complexes with different bioactive nitrogen‐based ligands; single‐crystal X‐ray and various biological activities determinations. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Asem Mubarak
- Department of Chemistry Birzeit University Birzeit Palestine
| | - Hijazi Abu Ali
- Department of Chemistry Birzeit University Birzeit Palestine
| | - Munther Metani
- Department of Biology and Biochemistry Birzeit University Birzeit Palestine
| |
Collapse
|
27
|
Singh A, Singh A, Kociok‐Köhn G, Trivedi M, Kumar A. New mercury(II) halide complexes with neutral ferrocene functionalized thiazolidine‐2‐thiones: Crystallographic and computational analyses. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ayushi Singh
- Department of Chemistry, Faculty of Science University of Lucknow Lucknow 226007 India
| | - Amita Singh
- Department of Chemistry, Faculty of Science University of Lucknow Lucknow 226007 India
- Department of Chemistry Dr. Ram Manohar Lohiya Avadh University Ayodhya 224001 India
| | - Gabriele Kociok‐Köhn
- Materials and Chemical Characterisation Facility MC2 University of Bath Bath BA2 7AY UK
| | - Manoj Trivedi
- Department of Chemistry, Sri Venkateswara College University of Delhi Delhi 110021 India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science University of Lucknow Lucknow 226007 India
| |
Collapse
|
28
|
Gado M, Rashad M, Kassab W, Badran M. Highly Developed Surface Area Thiosemicarbazide Biochar Derived from Aloe Vera for Efficient Adsorption of Uranium. RADIOCHEMISTRY 2021. [DOI: 10.1134/s1066362221030139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Nozha S, Morgan S, Ahmed SA, El-Mogazy M, Diab M, El-Sonbati A, Abou-Dobara M. Polymer complexes. LXXIV. Synthesis, characterization and antimicrobial activity studies of polymer complexes of some transition metals with bis-bidentate Schiff base. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129525] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Liu HP, Liao Y, Ren MZ, Quan ZJ, Wang XC. Synthesis, structural characterization, molecular docking study, biological activity of carbon monoxide release molecules as potent antitumor agents. Bioorg Chem 2021; 107:104621. [PMID: 33465671 DOI: 10.1016/j.bioorg.2020.104621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 11/12/2022]
Abstract
In this study, two series of novel carbon monoxide-releasing molecules (CO-RMs) containing Co were designed and synthesized. The synthesized complexes were characterized by IR, ESI-MS, 1H NMR and 13C NMR spectroscopies. The antitumor activity of all complexes on HepG2 cells, Hela cells and MDA-MB-231 cells were assayed by MTT. IC50 values of complexes 1-13 were 4.7-548.6 µM. Among these complexes, complex 1 was presented with a high selectivity to HepG2 cells (IC50 = 4.7 ± 0.76 μM). Compared with iCORM (inactive CORM), CORM (complex 1) showed a remarkable activity against tumor cells owing to co-effect of CO and the ligand of COX-2 inhibitor. In addition, complex 1 increased ROS in mitochondria and caused a decrease of dose-dependent mitochondrial membrane potential against HepG2 cells. Complex 1 down-regulated the expression of COX-2 protein in western blot analysis. The molecular docking study suggested that the complex 1 formed a hydrogen bond with amino acid R120 in the active site of the Human cyclooxygenase-2 (COX-2). Therefore, the complex 1 could induce apoptosis of HepG2 cells through targeting COX-2 and mitochondria pathways, and it maybe a potential therapeutic agent for cancer.
Collapse
Affiliation(s)
- Hua-Peng Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Department of Pharmacy, Gansu Medical College, Pingliang, Gansu 744000, PR China
| | - Yuan Liao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Ming-Zhe Ren
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, PR China.
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, PR China.
| |
Collapse
|
31
|
Mohammadnezhad G, Abad S, Farrokhpour H, Görls H, Plass W. Electrocatalytic property, anticancer activity, and density functional theory calculation of [NiCl(P^N^P)]Cl.EtOH. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Saeed Abad
- Department of Chemistry Isfahan University of Technology Isfahan 84156‐83111 Islamic Republic of Iran
| | - Hossein Farrokhpour
- Department of Chemistry Isfahan University of Technology Isfahan 84156‐83111 Islamic Republic of Iran
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry Friedrich‐Schiller‐Universität Jena Humboldtstr. 8 Jena 07743 Germany
| | - Winfried Plass
- Institute of Inorganic and Analytical Chemistry Friedrich‐Schiller‐Universität Jena Humboldtstr. 8 Jena 07743 Germany
| |
Collapse
|
32
|
Çınarlı M, Yüksektepe Ataol Ç, Çınarlı E, İdil Ö. Synthesis, characterization, biological, X-ray diffraction analysis and computational chemistry studies of new 2-acetylpyridine derivative hydrazone and its Zn(II) complex. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Delavar Mendi F, Sh Saljooghi A, Ramezani M, Kruszynski R, Poupon M, Kucerakova M, Huch V, Socha P, Babaei M, Alibolandi M. Five new complexes with deferiprone and N,N-donor ligands: evaluation of cytotoxicity against breast cancer MCF-7 cell line and HSA-binding determination. J Biomol Struct Dyn 2020; 39:4845-4858. [PMID: 32579069 DOI: 10.1080/07391102.2020.1782769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this study, five new complexes containing deferiprone (dfp) and N,N-donor ligands [bipyridine (bpy), 1,10-phenanthroline (phen) and ethylenediamine (en)] were synthesized: [Fe(dfp)2(bpy)](PF6) (1), [Fe(dfp)2(phen)](PF6) (2), [Cu2(dfp)2(bpy)2](PF6)2 (3), [Ga(dfp)2(bpy)](PF6) (4), and [Fe(dfp)2(en)](PF6) (5). Characterization of these complexes was carried out through elemental analysis and FT-IR, and single-crystal X-ray crystallography was used to determine their structures. Whilst the polyhedron has a distorted octahedral geometry in 1, 2, 4, and 5, it adopts a distorted square-pyramidal geometry in 3. Interaction of these compounds with human serum albumin (HSA) has been investigated through electronic absorption and fluorescence titration techniques. Emission quenching was performed separately for each complex at three different temperatures and thermodynamic parameters were calculated using binding constants to better understand the power of different binding forces with the HSA. Results demonstrated that compounds interact strongly with the HSA with a static quenching mechanism. Our evaluation of the cytotoxicity of complexes against the breast cancer MCF-7 cell line showed that complex 2 presents a better cytotoxicity than the standard cis-Pt. Finally, using the AutoDock 4.2 program, simulations to analyze the mechanism of complex-HSA interactions and their binding mode were carried out. Results showed that the best binding mode is located in subdomain IB for 1, 2, and 4, in I/II for 3, and in IA/IIA for 5. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatemeh Delavar Mendi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rafal Kruszynski
- Department of X-ray Crystallography and Crystal Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Morgane Poupon
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Monika Kucerakova
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Volker Huch
- Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Pawel Socha
- The Czochralski Laboratory of Advanced Crystal Engineering, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Maryam Babaei
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Amin BH, Abou‐Dobara MI, Diab MA, Gomaa EA, El‐Mogazy MA, El‐Sonbati AZ, EL‐Ghareib MS, Hussien MA, Salama HM. Synthesis, characterization, and biological investigation of new mixed‐ligand complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Basma H. Amin
- The Regional Center for Mycology and Biotechnology (RCMB) Al‐Azhar University Cairo Egypt
| | - Mohamed I. Abou‐Dobara
- Botany and Microbiology Department, Faculty of Science Damietta University Damietta Egypt
| | - Mostafa A. Diab
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| | - Essam A. Gomaa
- Chemistry Department, Faculty of Science Mansoura University Mansoura 35516 Egypt
| | | | - Adel Z. El‐Sonbati
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| | | | - Mostafa A. Hussien
- Department of Chemistry, Faculty of Science King Abdul‐Aziz University PO Box 80203 Jeddah 21589 Saudi Arabia
| | - Hanaa M. Salama
- Chemistry Department, Faculty of Science Port Said University Port Said Egypt
| |
Collapse
|
35
|
Choudhary VK, Bhatt AK, Dash D, Sharma N. Synthesis, characterization, thermal, computational and biological activity studies of new potential bioactive diorganotin (IV) nitrosubstitutedhydroxamates‐A comparative study. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Arvind Kumar Bhatt
- Department of BiotechnologyHimachal Pradesh University Summer Hill Shimla‐5 India
| | - Dibyajit Dash
- Department of ChemistrySant Longowal Institute of Engineering & Technology Longowal Sangrur Punjab‐148106 India
| | - Neeraj Sharma
- Department of ChemistryHimachal Pradesh University Summer Hill Shimla India
| |
Collapse
|
36
|
Synthesis, characterization, theoretical and molecular docking studies of mixed-ligand complexes of Cu(II), Ni(II), Co(II), Mn(II), Cr(III), UO2(II) and Cd(II). J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127065] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Li N, Yin M, Tsang DCW, Yang S, Liu J, Li X, Song G, Wang J. Mechanisms of U(VI) removal by biochar derived from Ficus microcarpa aerial root: A comparison between raw and modified biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134115. [PMID: 32380609 DOI: 10.1016/j.scitotenv.2019.134115] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/06/2019] [Accepted: 08/24/2019] [Indexed: 06/11/2023]
Abstract
Uranium (U) is a toxic and radioactive element. Excessive amounts of aqueous U(VI) generated from U mining, processing and nuclear industry may result in severe and irreversible damage to the environment. Herein, Ficus microcarpa aerial root (FMAR), a biowaste material, was used to adsorb U(VI) from aqueous solutions for the first time. Potassium permanganate (KMnO4)-modified FMAR biochar was synthesised, characterised and compared with raw (unmodified) biochar with respect to U(VI) adsorption. The results showed that the adsorption capability of the modified FMAR biochar was evidently higher than that of the raw biochar. Multiple characterisation techniques confirmed that the discrepancy was mainly due to the increased content of O-H and formation of irregular sheet-like nanostructure with the ultrafine MnO2 nanoparticles on the biochar surfaces after KMnO4 modification. The abundance of O-H and nanoscale MnO2 notably enhanced the adsorption of U(VI) by means of coordination and Lewis acid-base interaction. The results indicate that KMnO4-modified FMAR biochar has a good potential to serve as an environment-friendly adsorbent for the removal of U(VI) from solution.
Collapse
Affiliation(s)
- Nuo Li
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shitong Yang
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xue Li
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Gang Song
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| |
Collapse
|
38
|
Syed Ali Fathima S, Mohamed Sahul Meeran M, Nagarajan E. Design and synthesis of novel pyrazolone based coordination compounds: DNA synergy, biological screening, apoptosis, molecular docking and in-silico ADMET profile. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
Tabatabayi ZS, Homayouni-Tabrizi M, Neamati A, Beyramabadi SA. Mn(II) complex of a vitamin B6 Schiff base as an exclusive apoptosis inducer in human MCF7 and HepG2 cancer cells: Synthesis, characterization, and biological studies. J Cell Biochem 2019; 121:2677-2689. [PMID: 31680295 DOI: 10.1002/jcb.29488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
Abstract
Herein, a Mn(II) complex of the N,N'-dipyridoxyl(1,4-butanediamine) (═H2 L) Schiff base has been newly synthesized. The synthesized complex was characterized by several experimental methods. In addition, the density functional theory approaches were used for theoretical identification of the complex. A good agreement between the computed and experimental infrared frequencies demonstrates validity of the optimized geometry for the synthesized complex. In a N2 O2 manner, two azomethine nitrogens and two phenolate oxygens of the L2- ligand are coordinated to the Mn2+ metal ion. The biological studies indicate an efficient apoptotic and antioxidant activities of the synthesized [MnL(CH3 OH)2 ] complex on both of the HepG2 and MCF7 cancer cells. Since it has been suggested that the complex is an exclusive potent antitumor for treatment of the human breast and liver cancers.
Collapse
Affiliation(s)
- Zohreh S Tabatabayi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ali Neamati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - S Ali Beyramabadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
40
|
Diab M, Nozha S, El‐Sonbati A, El‐Mogazy M, Morgan S. Polymer complexes. LXXVIII. Synthesis and characterization of supramolecular uranyl polymer complexes: Determination of the bond lengths of uranyl ion in polymer complexes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- M.A. Diab
- Chemistry Department, Faculty of ScienceDamietta University Damietta Egypt
| | - S.G. Nozha
- Domyat LaboratoryMinistry of Health Damietta Egypt
| | - A.Z. El‐Sonbati
- Chemistry Department, Faculty of ScienceDamietta University Damietta Egypt
| | - M.A. El‐Mogazy
- Chemistry Department, Faculty of ScienceDamietta University Damietta Egypt
| | - Sh.M. Morgan
- Environmental Monitoring LaboratoryMinistry of Health Port Said Egypt
| |
Collapse
|
41
|
Shekhar B, Vasantha P, Sathish Kumar B, Anantha Lakshmi P, Ravi Kumar V, Satyanarayana S. Chromium‐metformin ternary complexes: Thermal, DNA interaction and Docking studies. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- B. Shekhar
- Department of ChemistryOsmania University Tarnaka, Hyderabad Telangana State 500007 India
| | - P. Vasantha
- Department of ChemistryUniversity College for Women, Osmania University Koti, Hyderabad Telangana State 500095 India
| | - B. Sathish Kumar
- Department of ChemistryOsmania University Tarnaka, Hyderabad Telangana State 500007 India
| | - P.V. Anantha Lakshmi
- Department of ChemistryOsmania University Tarnaka, Hyderabad Telangana State 500007 India
| | - V. Ravi Kumar
- Department of ChemistryOsmania University Tarnaka, Hyderabad Telangana State 500007 India
| | - S. Satyanarayana
- Department of ChemistryOsmania University Tarnaka, Hyderabad Telangana State 500007 India
| |
Collapse
|
42
|
El-Sonbati A, Mahmoud W, Mohamed GG, Diab M, Morgan S, Abbas S. Synthesis, characterization of Schiff base metal complexes and their biological investigation. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5048] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- A.Z. El-Sonbati
- Chemistry Department, Faculty of Science; Damietta University; Egypt
| | - W.H. Mahmoud
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
- Egypt Nanotechnology Center; Cairo University; El-Sheikh Zayed, 6 October 12588 Egypt
| | - M.A. Diab
- Chemistry Department, Faculty of Science; Damietta University; Egypt
| | - Sh.M. Morgan
- Environmental Monitoring Laboratory, Ministry of Health; Port Said Egypt
| | - S.Y. Abbas
- Chemistry Department, Faculty of Science; Damietta University; Egypt
| |
Collapse
|
43
|
Diab M, El-Sonbati A, El-Ghamaz N, Morgan S, El-Shahat O. Conducting polymers X: Dielectric constant, conduction mechanism and correlation between theoretical parameters and electrical conductivity of poly (N,N′-bis-sulphinyl p-phenylenediamine-2,6-diaminipyridine) and poly (N,N′-bis-sulphinyl p-phenylenediamine-3,5-diamine-1,2,4-trizole). Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
El‐Sonbati A, Diab M, Mohamed G, Saad M, Morgan S, El‐Sawy S. Polymer complexes. LXXVII. Synthesis, characterization, spectroscopic studies and immune response in cattle of quinoline polymer complexes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4973] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A.Z. El‐Sonbati
- Chemistry Department, Faculty of ScienceDamietta University Damietta Egypt
| | - M.A. Diab
- Chemistry Department, Faculty of ScienceDamietta University Damietta Egypt
| | - G.G. Mohamed
- Chemistry Department, Faculty of ScienceCairo University 12613 Giza Egypt
| | - M.A. Saad
- Central Laboratory for Evaluation of Veterinary Biologics Abbassia, 131 Cairo Egypt
| | - Sh.M. Morgan
- Environmental Monitoring LaboratoriesMinistry of Health Port Said Egypt
| | - S.E.A. El‐Sawy
- Chemistry Department, Faculty of ScienceDamietta University Damietta Egypt
| |
Collapse
|
45
|
Abou-Dobara MI, Omar NF, Diab MA, El-Sonbati AZ, Morgan SM, Salem OL, Eldesoky AM. Polymer complexes. LXXV. Characterization of quinoline polymer complexes as potential bio-active and anti-corrosion agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109727. [PMID: 31349456 DOI: 10.1016/j.msec.2019.05.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 11/24/2022]
Abstract
The Cu2+, Co2+, Ni2+ and UO22+ polymer complexes of 5-(2,3-dimethyl-1-phenylpyrazol-5-one azo)-8-hydroxyquinoline (HL) ligand were prepared and characterized. Elemental analyses, IR spectra, X-ray diffraction analysis and thermal analysis studies have been used to confirm the structure of the prepared polymer complexes. The chemical structure of metal chelates commensurate that the ligand acts as a neutral bis(bidentate) by through four sites of coordination (azo dye nitrogen, carbonyl oxygen, phenolic oxygen and hetero nitrogen from pyridine ring). The molecular and electronic structures of the hydrogen bond conformers of HL ligand were optimized theoretically and the quantum chemical parameters were calculated. Elemental analysis data suggested that the polymer complexes have composition of octahedral geometry for all the polymer complexes. Molecular docking of the binding between HL and the receptors of prostate cancer (PDB code 2Q7L Hormone) and the breast cancer (PDB code 1JNX Gene regulation) was studied. The interaction between HL and its polymer complexes with the calf thymus DNA (CT-DNA) was determined by absorption spectra. The antimicrobial activity of HL and its Cu2+, Co2+, Ni2+ and UO22+ polymer complexes were investigated; only Cu(II) polymer complex (1) was specifically active against Aspergillus niger. It inhibited the fungal sporulation and distorted the fungal mycelia, which became squashed at a concentration of 150 μg/ml; transmission electron microscope (TEM) also showed a deactivation of autophagy in the treated A. niger cells via accumulation of autophagic bodies in vacuoles. The inhibition process of the prepared ligand (HL) against the corrosion of carbon steel in 2 M HCl solution was determined by various methods (weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques) are found to be in reasonable agreement. The mechanism of inhibition in presence of HL in carbon steel corrosion obeys Friendlish adsorption isotherm.
Collapse
Affiliation(s)
- M I Abou-Dobara
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - N F Omar
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - M A Diab
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - A Z El-Sonbati
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt.
| | - Sh M Morgan
- Environmental Monitoring Laboratory, Ministry of Health, Port Said, Egypt
| | - O L Salem
- Ministry of Health, Damietta Laboratory, Damietta, Egypt
| | - A M Eldesoky
- Engineering Chemistry Department, High Institute of Engineering &Technology, New Damietta, Egypt; Al-Qunfudah Center for Scientific Research (QCSR), Chemistry Department, Al-Qunfudah University College, Umm Al-Qura University, Saudi Arabia
| |
Collapse
|
46
|
Diab M, Mohamed GG, Mahmoud W, El‐Sonbati A, Morgan S, Abbas S. Inner metal complexes of tetradentate Schiff base: Synthesis, characterization, biological activity and molecular docking studies. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4945] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- M.A. Diab
- Chemistry Department, Faculty of ScienceDamietta University Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of ScienceCairo University Giza 12613 Egypt
- Egypt Nanotechnology CenterCairo University El‐Sheikh Zayed, 6th October 12588 Egypt
| | - W.H. Mahmoud
- Chemistry Department, Faculty of ScienceCairo University Giza 12613 Egypt
| | - A.Z. El‐Sonbati
- Chemistry Department, Faculty of ScienceDamietta University Egypt
| | - Sh.M. Morgan
- Environmental Monitoring Laboratories, Ministry of Health Port Said Egypt
| | - S.Y. Abbas
- Chemistry Department, Faculty of ScienceDamietta University Egypt
| |
Collapse
|
47
|
Mohamed G, Mahmoud W, Diab M, El-Sonbati A, Abbas S. Synthesis, characterization, theoretical study and biological activity of Schiff base nanomaterial analogues. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
El‐Sonbati AZ, Diab M, Eldesoky AM, Morgan SM, Salem OL. Polymer complexes. LXXVI. Synthesis, characterization, CT‐DNA binding, molecular docking and thermal studies of sulfoxine polymer complexes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4839] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Mostafa A. Diab
- Chemistry Department, Faculty of ScienceDamietta University Egypt
| | - Ahmed M. Eldesoky
- Engineering Chemistry Department, High Institute of Engineering & Technology (New Damietta), Egypt and Al‐Qunfudah Center for Scientific Research (QCSR)Al‐Qunfudah University College, Umm Al‐Qura University KSA
| | - Shaimaa M. Morgan
- Environmental Monitoring LaboratoryMinistry of Health Port Said Egypt
| | | |
Collapse
|
49
|
Abou-Dobara MI, Omar NF, Diab MA, El-Sonbati AZ, Morgan SM, El-Mogazy MA. Allyl rhodanine azo dye derivatives: Potential antimicrobials target d-alanyl carrier protein ligase and nucleoside diphosphate kinase. J Cell Biochem 2019; 120:1667-1678. [PMID: 30187946 DOI: 10.1002/jcb.27473] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
3-Allyl-5-(4-arylazo)-2-thioxothiazolidine-4-one (HLn ) ligands (where n = 1 to 3) were hypothesized to have antimicrobial activities mediated through inhibition of new antimicrobial targets. The ligands (HLn ) were synthesized and characterized by infrared (IR) and 1 H nuclear magnetic resonance (1 H NMR) spectra. The ligands (HLn ) were in silico screened to their potential inhibition to models of d-alanyl carrier protein ligase (DltA) (from Bacillus cereus, PDB code 3FCE) and nucleoside diphosphate kinase (NDK) (from Staphylococcus aureus; PDB code 3Q8U). HL3 ligand has the best energy and mode of binding to both NDK and DltA, even though its binding to DltA was stronger than that to NDK. In antimicrobial activity of HL3 ligand, morphological and cytological changes in HL3 -treated bacteria agreed with the in silico results. The HL3 ligand showed significant antimicrobial activity against B. cereus, S. aureus, and Fusarium oxysporium. The HL3 -treated bacterial cells appeared malformed and incompletely separated. Its cell walls appeared electron-lucent and ruptured. They contained more mesosomes than normal cells. It was found that the HL3 ligand represented as a bactericide against B. cereus and S. aureusby blocking target DltA, and may target NDK.
Collapse
Affiliation(s)
- Mohamed I Abou-Dobara
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Noha F Omar
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Mostafa A Diab
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Adel Z El-Sonbati
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Shaimaa M Morgan
- Environmental Monitoring Laboratory, Ministry of Health, Port Said, Egypt
| | | |
Collapse
|
50
|
El-Sonbati A, Diab M, Serag L. Polymer complexes. LXXII. Spectroscopic studies, thermodynamics, DNA binding and biological activity of polymer complexes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A.Z. El-Sonbati
- Chemistry Department, Faculty of Science; Damietta University; Damietta Egypt
| | - M.A. Diab
- Chemistry Department, Faculty of Science; Damietta University; Damietta Egypt
| | - L.S. Serag
- Chemistry Department, Faculty of Science; Damietta University; Damietta Egypt
| |
Collapse
|