1
|
Suresh S, Palla S, Chung DR, Chien HS, Du BX, Shinde J, Kavala V, Yao CF. Catalyst-free reactions of anilines with β-chloroenones: synthesis of α-chloroenaminones and 1,4-benzodiazepines. Org Biomol Chem 2024; 22:8857-8868. [PMID: 39189549 DOI: 10.1039/d4ob00954a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The Michael addition of anilines to β-chloroenones gives enaminones by the elimination of hydrochloric acid (HCl). These enaminones are transformed into α-chloroenaminones via in situ sp2 C-H functionalization. Anilines that are attached to an electron-donating group react more readily with β-chloroenone to give the corresponding products in excellent yields. A highly atom-economical method has been developed using dimethyl sulfoxide (DMSO) as a green oxidant and solvent. The desired α-functionalized enaminones are formed in good yields with excellent Z-selectivity. We have established the generality of this reaction with many substrates, and scaled-up reactions have been performed to showcase the practical applications. A catalyst-free double annulation of β-chloroenones with o-phenylenediamine has also been demonstrated for the synthesis of 1,4-benzodiazepine derivatives in moderate yields under mild reaction conditions.
Collapse
Affiliation(s)
- Sundaram Suresh
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Sowndarya Palla
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Dai-Ru Chung
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Hung-Sheng Chien
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Bo-Xun Du
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Jivan Shinde
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Veerababurao Kavala
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| |
Collapse
|
2
|
Wang H, Wang YB, Zhan YF, Zhu YT, Jiang Y, Yang S, Chen M. Copper-Catalyzed Oxidative α-Double Bond Construction in α-Amino Carbonyl Compounds via Homocoupling with Arylamine Release. Org Lett 2024; 26:8128-8133. [PMID: 39287097 DOI: 10.1021/acs.orglett.4c03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Herein, we present a copper-catalyzed method for oxidative α-double bond formation in α-amino ketone compounds using DTBP as the oxidant. This process, involving homocoupling of α-amino radicals and arylamine release, efficiently produces a series of enaminone skeletons. The strategy has a broad substrate scope and functional group tolerance. In particular, arylamines bearing electron-rich substituents exhibit a pronounced reactivity. This approach facilitates the synthesis of diverse enaminones, enabling the efficient construction of nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Huan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yi-Bin Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yan-Fang Zhan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yi-Ting Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Bouone YO, Bouzina A, Aouf NE, Ibrahim-Ouali M. New efficient synthesis, spectroscopic characterization, and X-ray analysis of novel β-enaminocarboxamide derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-022-04939-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
4
|
Redjemia R, Bouzina A, Bouone YO, Mansouri A, Bahadi R, Berredjem M. Copper (I) bromide (CuBr): a highly efficient catalyst for the synthesis of β-enaminone derivatives using ultrasound irradiation under solvent-free conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Zhang Y, Luo M, Zhang Y, Cheng K, Li Y, Qi C, Shen R, Wang H. CuCl 2·2H 2O/TBHP mediated synthesis of β-enaminones via coupling reaction of vinyl azides with aldehydes. Org Biomol Chem 2022; 20:1952-1957. [PMID: 35170603 DOI: 10.1039/d1ob02479e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and efficient oxidative functionalization of vinyl azides with aldehydes furnishing a diverse array of β-acylated enaminones was developed. The cross coupling was accomplished in the presence of CuCl2·2H2O/TBHP and produced the desired β-acylated enaminones in a (Z)-stereo-selective and atom-economic manner, which make this protocol particularly attractive. In the transformation, the new C-C and C-N bonds were formed via a one-pot strategy including the process of radical addition and recombination.
Collapse
Affiliation(s)
- Yaohong Zhang
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Mengqiang Luo
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China. .,School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Yichan Zhang
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, P. R. China
| | - Kai Cheng
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Yong Li
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Chenze Qi
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Runpu Shen
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Hai Wang
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| |
Collapse
|
6
|
Catalytic oxidation of styrene by dinuclear Mn(III) coordination compound with asymmetric tridentate half-Salen type NNO-donor ligand. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Darugar V, Vakili M, Tayyari SF, Hansen PE, Kamounah FS. Molecular structure, intramolecular hydrogen bond strength, vibrational assignment, and spectroscopic insight of 4-phenylamino-3-penten-2-one and its derivatives: A theoretical and experimental study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Amaye IJ, Haywood RD, Mandzo EM, Wirick JJ, Jackson-Ayotunde PL. Enaminones as building blocks in drug development: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131984] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Ding Q, Yu Y, Huang F, Zhang L, Zheng JG, Xu M, Baell JB, Huang H. A Reusable CNT-Supported Single-Atom Iron Catalyst for the Highly Efficient Synthesis of C-N Bonds. Chemistry 2020; 26:4592-4598. [PMID: 32053247 DOI: 10.1002/chem.201905468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 01/21/2023]
Abstract
C-N bond formation is regarded as a very useful and fundamental reaction for the synthesis of nitrogen-containing molecules in both organic and pharmaceutical chemistry. Noble-metal and homogeneous catalysts have frequently been used for C-N bond formation, however, these catalysts have a number of disadvantages, such as high cost, toxicity, and low atom economy. In this work, a low-toxic and cheap iron complex (iron ethylene-1,2-diamine) has been loaded onto carbon nanotubes (CNTs) to prepare a heterogeneous single-atom catalyst (SAC) named Fe-Nx /CNTs. We employed this SAC in the synthesis of C-N bonds for the first time. It was found that Fe-Nx /CNTs is an efficient catalyst for the synthesis of C-N bonds starting from aromatic amines and ketones. Its catalytic performance was excellent, giving yields of up to 96 %, six-fold higher than the yields obtained with noble-metal catalysts, such as AuCl3 /CNTs and RhCl3 /CNTs. The catalyst showed efficacy in the reactions of thirteen aromatic amine substrates, without the need for additives, and seventeen enaminones were obtained. High-angle annular dark-field scanning transmission electron microscopy in combination with X-ray absorption spectroscopy revealed that the iron species were well dispersed in the Fe-Nx /CNTs catalyst as single atoms and that Fe-Nx might be the catalytic active species. This Fe-Nx /CNTs catalyst has potential industrial applications as it could be cycled seven times without any significant loss of activity.
Collapse
Affiliation(s)
- Qifeng Ding
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jian-Guo Zheng
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697-2800, USA
| | - Mingjie Xu
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697-2800, USA
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.,Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|