1
|
Montes-Robledo A, Baldiris-Avila R, Galindo JF. D-Mannoside FimH Inhibitors as Non-Antibiotic Alternatives for Uropathogenic Escherichia coli. Antibiotics (Basel) 2021; 10:antibiotics10091072. [PMID: 34572654 PMCID: PMC8465801 DOI: 10.3390/antibiotics10091072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
FimH is a type I fimbria of uropathogenic Escherichia coli (UPEC), recognized for its ability to adhere and infect epithelial urinary tissue. Due to its role in the virulence of UPEC, several therapeutic strategies have focused on the study of FimH, including vaccines, mannosides, and molecules that inhibit their assembly. This work has focused on the ability of a set of monosubstituted and disubstituted phenyl mannosides to inhibit FimH. To determine the 3D structure of FimH for our in silico studies, we obtained fifteen sequences by PCR amplification of the fimH gene from 102 UPEC isolates. The fimH sequences in BLAST had a high homology (97–100%) to our UPEC fimH sequences. A search for the three-dimensional crystallographic structure of FimH proteins in the PDB server showed that proteins 4X5P and 4XO9 were found in 10 of the 15 isolates, presenting a 67% influx among our UPEC isolates. We focused on these two proteins to study the stability, free energy, and the interactions with different mannoside ligands. We found that the interactions with the residues of aspartic acid (ASP 54) and glutamine (GLN 133) were significant to the binding stability. The ligands assessed demonstrated high binding affinity and stability with the lectin domain of FimH proteins during the molecular dynamic simulations, based on MM-PBSA analysis. Therefore, our results suggest the potential utility of phenyl mannoside derivatives as FimH inhibitors to mitigate urinary tract infections produced by UPEC; thus, decreasing colonization, disease burden, and the costs of medical care.
Collapse
Affiliation(s)
- Alfredo Montes-Robledo
- Grupo de Investigación Microbiología Clínica y Ambiental, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena de Indias 13001, Colombia;
- Maestría en Microbiología, Facultad de Medicina, Universidad de Cartagena, Cartagena de Indias 13001, Colombia
| | - Rosa Baldiris-Avila
- Grupo de Investigación Microbiología Clínica y Ambiental, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena de Indias 13001, Colombia;
- Maestría en Microbiología, Facultad de Medicina, Universidad de Cartagena, Cartagena de Indias 13001, Colombia
- Grupo de Investigación CIPTEC, Facultad de Ingeniería, Fundacion Universitaria Tecnologico Comfenalco—Cartagena, Cartagena de Indias 13001, Colombia
- Correspondence: (R.B.-A.); (J.F.G.)
| | - Johan Fabian Galindo
- Departamento de Química, Universidad Nacional de Colombia, Bogotá 11321, Colombia
- Correspondence: (R.B.-A.); (J.F.G.)
| |
Collapse
|
2
|
Mary YS, Mary YS, Bielenica A, Armaković S, Armaković SJ, Chandramohan V, Dammalli M. Investigation of the reactivity properties of a thiourea derivative with anticancer activity by DFT and MD simulations. J Mol Model 2021; 27:217. [PMID: 34218339 DOI: 10.1007/s00894-021-04835-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
Spectroscopic analysis of 1-(2-fluorophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea (FPTT) is reported. Experimental and theoretical analyses of FPTT, with molecular dynamics (MD) simulations, are reported for finding different parameters like identification of suitable excipients, interactions with water, and sensitivity towards autoxidation. Molecular dynamics and docking show that FPTT can act as a potential inhibitor for new drug. Additionally, local reactivity, interactivity with water, and compatibility of FPTT molecule with frequently used excipients have been studied by combined application of density functional theory (DFT) and MD simulations. Analysis of local reactivity has been performed based on selected fundamental quantum-molecular descriptors, while interactivity with water was studied by calculations of radial distribution functions (RDFs). Compatibility with excipients has been assessed through calculations of solubility parameters, applying MD simulations. Graphical abstract Reactive sites identified.
Collapse
Affiliation(s)
| | | | - Anna Bielenica
- Department of Biochemistry, Medical University of Warsaw, 02-097, Warszawa, Poland
| | - Stevan Armaković
- Faculty of Sciences, Department of Physics, University of Novi Sad, Trg D. Obradovića 4, Novi Sad, 21000, Serbia
| | - Sanja J Armaković
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg D. Obradovića 3, Novi Sad, 21000, Serbia
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, 572103, India
| | - Manjunath Dammalli
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, 572103, India
| |
Collapse
|
3
|
Bahkali A, Wei JX, Deng Y. Structural comparison of ethylenediamine platinum(II) complexes containing thiourea and its di- and tetramethyl substituted derivatives. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1923015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ashwaq Bahkali
- Department of Chemistry, Texas Southern University, Houston, TX, USA
| | - Jacob Xin Wei
- Department of Chemistry, Texas Southern University, Houston, TX, USA
| | - Yuanjian Deng
- Department of Chemistry, Texas Southern University, Houston, TX, USA
| |
Collapse
|
4
|
Synthesis and characterization of ethylenediamine platinum(II) complexes containing thiourea derivatives. X-ray crystal structures of [Pt(en)(2-imidazolidinethione)2](NO3)2 and [Pt(en)(1-phenyl-2-thiourea)2](NO3)2. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Kumar VS, Mary YS, Mary YS, Krátký M, Vinsova J, Baraldi C, Roxy MS, Gamberini MC. Spectroscopic investigations, concentration dependent SERS, and molecular docking studies of a hydroxybenzylidene derivative. J Biomol Struct Dyn 2021; 40:6952-6964. [PMID: 33645445 DOI: 10.1080/07391102.2021.1891971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Spectroscopic analysis, density functional theory (DFT) studies and surface enhanced Raman scattering (SERS) of (E)-N'-(5-chloro-2-hydroxybenzylidene)-4-trifluoromethyl) benzohydrazide (CHTB) have been studied on different silver colloids in order to know the particular chemical species responsible for the spectra. Very significant shifts are observed for Raman and SERS wavenumbers. Observed changes in the υ-ring modes may be due to surface interaction of the π-electrons and the presence of this suggested that RingII is more tilted in both cases than RingI and the molecule assumes a tilted orientation for the concentration 10-3 M. Orientation changes are seen in concentration dependent SERS spectra. The molecular electrostatic potential has also been constructed to determine the electron rich and poor site of CHTB. The molecular docking studies indicate that the binding affinity and hydrogen bond interactions with the receptors may be supporting evidence for further studies in designing other pharmaceutical applications of CHTB.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Veena S Kumar
- Department of Physics, SN College, Kollam, Research Centre, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | | | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jarmila Vinsova
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Cecilia Baraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - M S Roxy
- Department of Physics, SN College, Kollam, Research Centre, University of Kerala, Thiruvananthapuram, Kerala, India
| | | |
Collapse
|
6
|
Almuqrin AH, Al-Otaibi JS, Mary YS, Mary YS. DFT computational study towards investigating psychotropic drugs, promazine and trifluoperazine adsorption on graphene, fullerene and carbon cyclic ring nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119012. [PMID: 33039847 DOI: 10.1016/j.saa.2020.119012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/05/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Detection and qualification process related to impurities assume importance in pharmacological drug development programmes and the present article gives the structural and spectral characterisation of phenothiazine derivatives, promazine (PME) and trifluoperazine (TPE) and their self-assembly with graphene/fullerene/carbon ring (CG/CF/CR) systems theoretically. The investigation of adsorption behaviour of these compounds can provide valuable information about its reactivity, electronic and structural properties. Three-dimensional electrostatic potential diagrams were mapped. The frontier orbital energies and energy band gaps of the molecules were computed. Delocalization of charge density between the bonding or lone pair and antibonding orbitals is calculated by NBO analysis. Docking was executed to investigate binding areas of chemical compounds. Bioactivity scores show that the pharmacokinetic and pharmacological properties of the ligands are appropriate leading to be considered potential drug agents. The obtained theoretical wavenumber results of the present study were fully compatible with the experimental results.
Collapse
Affiliation(s)
- Aljawhara H Almuqrin
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Y Sheena Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India.
| | - Y Shyma Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| |
Collapse
|
7
|
Biological perspective of a triazine derivative with isatin/chalcone/acridone: DFT and docking investigations. Struct Chem 2021. [DOI: 10.1007/s11224-020-01609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Qi F, Qi Q, Song J, Huang J. Synthesis, Crystal Structure, Biological Evaluation and in Silico Studies on Novel (E)-1-(Substituted Benzylidene)-4-(3-isopropylphenyl)thiosemicarbazone Derivatives. Chem Biodivers 2020; 18:e2000804. [PMID: 33346933 DOI: 10.1002/cbdv.202000804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022]
Abstract
A series of (E)-1-(substituted benzylidene)-4-(3-isopropylphenyl)thiosemicarbazone derivatives were synthesized and characterized by FT-IR spectrum, elemental analysis, NMR spectrum, HR-MS spectrum, and X-ray single crystal diffraction technology. The crystal structures and packing of (E)-1-(4-fluorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone and (E)-1-(3-fluorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone were maintained through the intramolecular hydrogen bond (N3-H6⋅⋅⋅N1) and intermolecular hydrogen bonds (N2-H4⋅⋅⋅S1, C14-H14⋅⋅⋅F1 and C7-H7⋅⋅⋅S1). The results obtained by employing the DPPH free radicals scavenging assay indicated that (E)-1-(4-methoxylbenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone had a more significant antioxidant activity compared with other compounds. The results measured by adopting the disc diffusion method elucidated that (E)-1-(4-trifluoromethylbenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone possessed a more prominent antifungal activity than other compounds. Molecular docking showed that (E)-1-(4-chlorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone had the highest affinity with receptor protein (1NMT). Moreover, the drug-likeness characteristic, physicochemical properties, pharmacokinetic profiles, and bioactivity scores of all the compounds were predicted through in silico studies. The results illustrated that (E)-1-(4-fluorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone had the drug-likeness characteristic and all the compounds were considered as moderately biological active molecules.
Collapse
Affiliation(s)
- Fan Qi
- School of Chemical Engineering, Northwest University/Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an, 710069, P. R. China
| | - Qianqian Qi
- Baoji Hospital of Traditional Chinese Medicine, Baoji, 721000, P. R. China
| | - Jirong Song
- Ministry of Science and Technology, The Palace Museum, Beijing, 100009, P. R. China
| | - Jie Huang
- School of Chemical Engineering, Northwest University/Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an, 710069, P. R. China
| |
Collapse
|
9
|
Conformational analysis and quantum descriptors of two bifonazole derivatives of immense anti-tuber potential by using vibrational spectroscopy and molecular docking studies. Struct Chem 2020. [DOI: 10.1007/s11224-020-01678-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
FT-IR and FT-Raman investigation, quantum chemical studies, molecular docking study and antimicrobial activity studies on novel bioactive drug of 1-(2,4-Dichlorobenzyl)-3-[2-(3-(4-chlorophenyl)-5-(4-(propan-2-yl)phenyl-4,5-dihydro-1H-pyrazol-1-yl]-4-oxo-4,5-dihydro-1,3-thiazol-5(4H)-ylidence]-2,3-dihydro-1H-indol-2-one. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Experimental and computational analysis of 1-(4-chloro-3-nitrophenyl)-3-(3,4-dichlorophenyl)thiourea. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127587] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Mohapatra RK, Das PK, Pradhan MK, El-Ajaily MM, Das D, Salem HF, Mahanta U, Badhei G, Parhi PK, Maihub AA, -E-Zahan MK. Recent Advances in Urea- and Thiourea-Based Metal Complexes: Biological, Sensor, Optical, and Corroson Inhibition Studies. COMMENT INORG CHEM 2019. [DOI: 10.1080/02603594.2019.1594204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Pradeep K. Das
- Department of Chemistry, N. C. Autonomous College, Jajpur, Odisha, India
| | - Manoj K. Pradhan
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Marei M. El-Ajaily
- Chemistry Department, Faculty of Science, Benghazi University, Benghazi, Libya
| | - Debadutta Das
- Department of Chemistry, Sukanti Degree College, Subarnapur, Odisha, India
| | - Halima F. Salem
- Chemistry Department, Faculty of Science, Benghazi University, Benghazi, Libya
| | - Umakanta Mahanta
- Department of Chemistry, B. B. Mahavidyalaya, Harichandanpur, Keonjhar, Odisha, India
| | - Gouranga Badhei
- Department of Chemistry, SKDAV Government Polytechnic, Rourkela, Odisha, India
| | - Pankaj K. Parhi
- School of Chemical Technology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
13
|
Alcívar León CD, Echeverría GA, Piro OE, Ulic SE, Jios JL, Luna Tapia CA, Mera Guzmán MF. New thiourea and urea derivatives containing trifluoromethyl- and bis-triflouromethyl-4H-chromen-3-yl substituents. Mol Phys 2019. [DOI: 10.1080/00268976.2018.1514132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- C. D. Alcívar León
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - G. A. Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata), La Plata, Argentina
| | - O. E. Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata), La Plata, Argentina
| | - S. E. Ulic
- CEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, República Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Buenos Aires, República Argentina
| | - J. L. Jios
- UNIDAD PLAPIMU-LASEISIC (UNLP-CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - C. A. Luna Tapia
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - M. F. Mera Guzmán
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad Tecnológica Equinoccial, Quito, Ecuador
| |
Collapse
|
14
|
Synthesis, structures, drug-likeness, in vitro evaluation and in silico docking on novel N-benzoyl-N′-phenyl thiourea derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Liu W, Huang YL, Yin ZL, Ding ZY. Investigation on the decomposition process of sodium aluminate solution by spectroscopic and theoretical calculation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|