1
|
Shenbagapushpam M, Ashwin BCMA, Mareeswaran PM, Yuvaraj P, Kodirajan S. Active Hydrogen Free, Z-Isomer Selective Isatin Derived "Turn on" Fluorescent Dual Anions Sensor. J Fluoresc 2024:10.1007/s10895-024-03762-1. [PMID: 38896304 DOI: 10.1007/s10895-024-03762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/05/2024] [Indexed: 06/21/2024]
Abstract
An efficient and anions fluorescence "on-off" sensor of 1-(prop-2-yn-1-yl)-3-(quinolin-3-ylimino)indolin-2-one (PQI) has been developed for the selective sensing of dual anions of F- and NO3- ions in aqueous medium. Active hydrogen and Lewis acidic binding sites free, Z- isomer of isatin based π-conjugated quinoline exhibited excellent sensing activity against F- and NO3- ions in UV light. The fluorescence turns on the process accomplished via the PET "on-off" mechanism. The interaction between probe molecule and anions is thought to be a non-covalent interaction of the low electron density covalently bonded N-methylene moiety of propargyl isatin (-N-CH2-) of probe molecule with F- ion and the terminal acidic proton of propargyl group of isatin (-C≡C-H) with NO3- ions. The modes of anions binding with PQI and plausible mechanisms are proposed by 1H and 13C NMR titrations. The selectivity of anions sensing may be offered by the bucked structure of the Z-isomer. The calculated association constant values for PQI and F- and NO3- are ions 2.5 × 104 M-1 and 2.2 × 103 M-1, respectively, indicating strong binding interaction between the PQI and anions. The association nature of anions and probes was analyzed by a Jobs plot and the finding indicates both F- and NO3- ions are in 1:1 complexation with PQI. The limit of detection (LOD) of the probe with F- and NO3- ions is calculated and is to be 6.91 × 10-7 M and 9.93 × 10-7 M, respectively. The proposed PQI fluorophore possesses a low limit of detection (LOD) for both F- and NO3- ions which is within the WHO prescribed detection limit.
Collapse
Affiliation(s)
- Muthumanickam Shenbagapushpam
- Department of Chemistry, Thiagarajar College (Affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India
- Department of Chemistry, Mannar Thirumalai Naicker College, Madurai, Tamil Nadu, India
| | | | | | - Paneerselvam Yuvaraj
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Selvakumar Kodirajan
- Department of Chemistry, Thiagarajar College (Affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India.
| |
Collapse
|
2
|
Development of coumarin derivatives as fluoride ion sensor. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Sarmiento JT, Portilla J. Current Advances in Diazoles-based Chemosensors for CN- and FDetection. Curr Org Synth 2023; 20:77-95. [PMID: 35184705 DOI: 10.2174/1570179419666220218095741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Advances in molecular probes have recently intensified because they are valuable tools in studying species of interest for human health, the environment, and industry. Among these species, cyanide (CN-) and fluoride (F-) stand out as hazardous and toxic ions in trace amounts. Thus, there is a significant interest in probes design for their detection with diverse diazoles (pyrazole and imidazole) used for this purpose. These diazole derivatives are known as functional molecules because of their known synthetic versatility and applicability, as they exhibit essential photophysical properties with helpful recognition centers. This review provides an overview of the recent progress (2017-2021) in diazole-based sensors for CN- and F- detection, using the azolic ring as a signaling or recognition unit. The discussion focuses on the mechanism of the action described for recognizing the anion, the structure of the probes with the best synthetic simplicity, detection limits (LODs), application, and selectivity. In this context, the analysis involves probes for cyanide sensing first, then probes for fluoride sensing, and ultimately, dual probes that allow both species recognition.
Collapse
Affiliation(s)
- Jeymy T Sarmiento
- Department of Chemistry, Faculty of Sciences, Universidad de los Andes, Bogota, D.C, Colombia
| | - Jaime Portilla
- Department of Chemistry, Faculty of Sciences, Universidad de los Andes, Bogota, D.C, Colombia
| |
Collapse
|
4
|
Karuppiah K, Nelson M, Alam MM, Selvaraj M, Sepperumal M, Ayyanar S. A new 5-bromoindolehydrazone anchored diiodosalicylaldehyde derivative as efficient fluoro and chromophore for selective and sensitive detection of tryptamine and F - ions: Applications in live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120777. [PMID: 34954479 DOI: 10.1016/j.saa.2021.120777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
A novel indole hydrazone tagged moiety, 2-((5-bromo-1H-indol-2-yl) methylene) hydrazono) methyl)-4, 6-diiodophenol (BHDL) has been developed for the selective and sensitive detection of biogenic tryptamine and F- ions. The binding dexterity of probe BHDL towards F-/tryptamine (TryptA) has been investigated by UV-visible/fluorescence spectroscopy. In the presence of TryptA, probe exhibits strong enhancement in the emission band at 433 nm and the band at 555 nm underwent a blue shift accompanied by a decrease in intensity by the inhibition of Excited State Intramolecular Proton Transfer (ESIPT) on BHDL. Excitingly, complexation with F- ions as well triggers an enhancement in a fluorescence band at 430 nm with the concomitant disappearance of the emission band at 555 nm due to the inhibition of ESIPT and deprotonation process initiated by the hydrogen bonding complex formation. Further, Density Functional Theoretical (DFT) calculations have been performed to support the mechanism functioned on the probe BHDL in the presence of TryptA/F-.
Collapse
Affiliation(s)
- Krishnaveni Karuppiah
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Malini Nelson
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - M Mujahid Alam
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia.
| | - Murugesan Sepperumal
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Siva Ayyanar
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
5
|
Kandemir E, Özkütük M, Aydıner B, Seferoğlu N, Erer H, Seferoğlu Z. Novel fluorescent coumarin-thiazole based sensors for selective determination of cyanide in aqueous media. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Tetraphenylethylene-Substituted Bis(thienyl)imidazole (DTITPE), An Efficient Molecular Sensor for the Detection and Quantification of Fluoride Ions. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fluoride ion plays a pivotal role in a range of biological and chemical applications however excessive exposure can cause severe kidney and gastric problems. A simple and selective molecular sensor, 4,5-di(thien-2-yl)-2-(4-(1,2,2-triphenylvinyl)-phenyl)-1H-imidazole, DTITPE, has been synthesized for the detection of fluoride ions, with detection limits of 1.37 × 10−7 M and 2.67 × 10−13 M, determined by UV-vis. and fluorescence spectroscopy, respectively. The variation in the optical properties of the molecular sensor in the presence of fluoride ions was explained by an intermolecular charge transfer (ICT) process between the bis(thienyl) and tetraphenylethylene (TPE) moieties upon the formation of a N-H---F− hydrogen bond of the imidazole proton. The sensing mechanism exhibited by DTITPE for fluoride ions was confirmed by 1H NMR spectroscopic studies and density functional theory (DFT) calculations. Test strips coated with the molecular sensor can detect fluoride ions in THF, undergoing a color change from white to yellow, which can be observed with the naked eye, showcasing their potential real-world application.
Collapse
|
7
|
Synthesis of 2H-pyrano[3,2-g]quinolin-2-ones containing a pyrimidinone moiety and characterization of their anticoagulant activity via inhibition of blood coagulation factors Xa and XIa. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02945-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Mondal A, Nag S, Banerjee P. Coumarin functionalized molecular scaffolds for the effectual detection of hazardous fluoride and cyanide. Dalton Trans 2021; 50:429-451. [PMID: 33325937 DOI: 10.1039/d0dt03451g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fluoride and cyanide contamination in drinking water imposes detrimental impacts on human health above their permissible limits. Hence, the quantitative detection of these colourless water-soluble toxins has attracted attention. Even though a plethora of chemosensors have been reported so far for the detection of fluoride and cyanide from various matrices, still their applicability is limited to a few examples. Nevertheless, recent advances in the syntheses of coumarin derivatives have shown significant impact on fluoride and cyanide detection. Therefore, this present review provides a brief overview of the application of coumarin-coupled molecular scaffolds towards the detection of perilous fluoride and cyanide along with their sensing mechanisms in order to develop more innovative, simple, sensitive, real-time responsive and cost-effective coumarin-based supramolecular chemosensors to promote next generation approaches towards the ultra-trace quantitative detection of these toxic anions.
Collapse
Affiliation(s)
- Amita Mondal
- CSIR - Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India.
| | | | | |
Collapse
|
9
|
Fedorowicz J, Cebrat M, Wierzbicka M, Wiśniewska P, Jalińska A, Dziomba S, Gdaniec M, Jaremko M, Jaremko Ł, Chandra K, Szewczuk Z, Sączewski J. Synthesis and evaluation of dihydro-[1,2,4]triazolo[4,3-a]pyridin-2-ium carboxylates as fixed charge fluorescent derivatization reagents for MEKC and MS proteomic analyses. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Kashyap S, Singh R, Singh UP. Inorganic and organic anion sensing by azole family members. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213369] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Overview on developed synthesis procedures of coumarin heterocycles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01984-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractConsidering highly valuable biological and pharmaceutical properties of coumarins, the synthesis of these heterocycles has been considered for many organic and pharmaceutical chemists. This review includes the recent research in synthesis methods of coumarin systems, investigating their biological properties and describing the literature reports for the period of 2016 to the middle of 2020. In this review, we have classified the contents based on co-groups of coumarin ring. These reported methods are carried out in the classical and non-classical conditions particularly under green condition such as using green solvent, catalyst and other procedures.
Collapse
|
12
|
Kaushik R, Sakla R, Ghosh A, Dama S, Mittal A, Jose DA. Copper Complex-Embedded Vesicular Receptor for Selective Detection of Cyanide Ion and Colorimetric Monitoring of Enzymatic Reaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47587-47595. [PMID: 31741372 DOI: 10.1021/acsami.9b17316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Detection of environmentally important ion cyanide (CN-) has been done by a new method involving displacement of both metal and indicator, metal indicator displacement approach (MIDA) on the vesicular interface. Terpyridine unit was selected as the binding site for metal (Cu2+), whereas Eosin-Y (EY) was preferred as an indicator. About 150 nm sized nanoscale vesicular ensemble (Lip-1.Cu) has shown good selectivity and sensitivity for CN- without any interference from other biologically and environmentally important anions. Otherwise, copper complexes are known for the interferences of binding with phosphates and amino acids. The Lip-1.Cu nanoreceptor also has the possibility to be used for real-time colorimetric scanning for the released HCN via enzymatic reactions. Lip-1.Cu has several superiorities over the other reported sensor systems. It has worked in 100% aqueous environment, fast response time with colorimetric monitoring of enzymatic reaction, and low detection limit.
Collapse
Affiliation(s)
- Rahul Kaushik
- Department of Chemistry , National Institute of Technology (NIT)-Kurukshetra , Kurukshetra 136119 , Haryana , India
| | - Rahul Sakla
- Department of Chemistry , National Institute of Technology (NIT)-Kurukshetra , Kurukshetra 136119 , Haryana , India
| | - Amrita Ghosh
- Department of Chemistry , National Institute of Technology (NIT)-Kurukshetra , Kurukshetra 136119 , Haryana , India
| | - Sapna Dama
- Skeletal Muscle Lab, Institute of Integrated and Honors Studies , Kurukshetra University , Kurukshetra 136119 , Haryana , India
| | - Ashwani Mittal
- Skeletal Muscle Lab, Institute of Integrated and Honors Studies , Kurukshetra University , Kurukshetra 136119 , Haryana , India
| | - D Amilan Jose
- Department of Chemistry , National Institute of Technology (NIT)-Kurukshetra , Kurukshetra 136119 , Haryana , India
| |
Collapse
|
13
|
Detailed theoretical characterization of azo chromophores containing dicyanomethylene acceptor and various coupling components by DFT. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Gu L, Zheng T, Xu Z, Song Y, Li H, Xia S, Shen L. A novel bifunctional fluorescent and colorimetric probe for detection of mercury and fluoride ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:88-95. [PMID: 30205308 DOI: 10.1016/j.saa.2018.08.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/03/2018] [Accepted: 08/29/2018] [Indexed: 05/19/2023]
Abstract
A fluorescent and colorimetric probe L1 based on a simple coumarin derivative for detection of Hg2+ and F- ions was developed. Upon addition of Hg2+ and F- ions, L1 underwent desulfurization and desilylation, respectively, to induce marked increase in the fluorescence intensity and sharp color change from light yellow to dark purple and light brown, respectively. Probe L1 could be used for sensing and for quantitative measurement of Hg2+ and F- ions by both UV-vis and fluorescence spectra. The bifunctional probe exhibited a high selectivity over other competitive cations and anions and could be used in both organic and aqueous media over a wide pH range.
Collapse
Affiliation(s)
- Liang Gu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Tao Zheng
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Zhenxiang Xu
- Penglai Xinguang Pigment Chemical Co., Ltd, Penglai 265601, PR China
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Hongqi Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China.
| | - Shengtao Xia
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Li Shen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| |
Collapse
|
15
|
Aydıner B, Seferoğlu Z. Proton Sensitive Functional Organic Fluorescent Dyes Based on Coumarin-imidazo[1,2-a
]pyrimidine; Syntheses, Photophysical Properties, and Investigation of Protonation Ability. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Burcu Aydıner
- Department of Chemistry; Gazi University; Teknikokullar 06500 Ankara Turkey
| | - Zeynel Seferoğlu
- Department of Chemistry; Gazi University; Teknikokullar 06500 Ankara Turkey
| |
Collapse
|