1
|
Araújo IM, Pereira RLS, de Araújo ACJ, Gonçalves SA, Tintino SR, de Morais Oliveira-Tintino CD, de Menezes IRA, Salamoni R, Begnini IM, Rebelo RA, da Silva LE, Domiciano CB, Coutinho HDM. In vitro and in silico effect of meldrum's acid-derived compounds on Staphylococcus aureus strains as NorA efflux pump inhibitors. Biophys Chem 2025; 316:107344. [PMID: 39442379 DOI: 10.1016/j.bpc.2024.107344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The misuse of antibiotics has led to an alarming increase in bacterial strains resistant to these drugs. Efflux pumps, which expel antibiotics from bacterial cells, have emerged as one of the key mechanisms of bacterial resistance. In the quest to combat and mitigate bacterial resistance, researchers have turned their attention to efflux pump inhibitors as a potential solution. Meldrum's acid, a synthetic molecule widely utilized in the synthesis of bioactive compounds, has garnered significant interest in this regard. Hence, this study aims to investigate the antibacterial activity and evaluate the efficacy of three derivatives of meldrum's acid in inhibiting efflux mechanisms, employing both in silico and in vitro approaches. The antibacterial activity of the derivatives was assessed through rigorous broth microdilution testing. While the derivatives themselves did not exhibit direct antibacterial activity, they demonstrated remarkable potential in potentiating the effects of antibiotics. Additionally, fluorescence emission assays using ethidium bromide (EtBr) revealed fluorescence levels comparable to the positive control, indicating a possible blockade of efflux pumps. Molecular docking studies conducted in silico further supported these findings by revealing binding interactions similar to norfloxacin and CCCP, known efflux pump inhibitors. These results underscore the potential of meldrum's acid derivatives as effective inhibitors of efflux pumps. By inhibiting these mechanisms, the derivatives hold promise in enhancing the effectiveness of antibiotics and combatting bacterial resistance. This study contributes valuable insights into the development of novel strategies to address the pressing issue of bacterial resistance and paves the way for further research and exploration in this field.
Collapse
Affiliation(s)
- Isaac Moura Araújo
- Departamento de Química-Biológica, Universidade Regional do Cariri - URCA, Crato. 63105-000 Ceará, Brazil
| | | | | | - Sheila Alves Gonçalves
- Departamento de Biologia, Universidade Regional do Cariri - URCA, Crato, 63105-000 Ceará, Brazil
| | - Saulo Relison Tintino
- Departamento de Química-Biológica, Universidade Regional do Cariri - URCA, Crato. 63105-000 Ceará, Brazil
| | | | | | - Renata Salamoni
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau, 89030-903, SC, Brazil
| | - Iêda Maria Begnini
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau, 89030-903, SC, Brazil
| | - Ricardo Andrade Rebelo
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau, 89030-903, SC, Brazil
| | - Luiz Everson da Silva
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau, 89030-903, SC, Brazil
| | | | | |
Collapse
|
2
|
Araújo IM, Pereira RLS, de Araújo ACJ, Gonçalves SA, Tintino SR, Oliveira-Tintino CDDM, de Menezes IRA, Salamoni R, Begnini IM, Rebelo RA, Silva LED, Gurgel APAD, Coutinho HDM. Meldrum's acid derivates are MepA efflux pump inhibitors: In vitro and in silico essays. J Basic Microbiol 2024; 64:e2300558. [PMID: 38110852 DOI: 10.1002/jobm.202300558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
Efflux pumps are proteins capable of expelling antibiotics from bacterial cells, have emerged as a major mechanism of bacterial resistance. In the ongoing pursuit to overcome and reduce bacterial resistance, novel substances are being explored as potential efflux pump inhibitors. Meldrum's acid, a synthetic molecule widely studied for its role in synthesizing bioactive compounds, holds promise in this regard. Therefore, the objective of this study is to evaluate the antibacterial activity of three derivatives of Meldrum's acid and assess their ability to inhibit efflux mechanisms, employing both in silico and in vitro approaches. The antibacterial activity of the derivatives was assessed using a broth microdilution testing method. Surprisingly, the derivatives did not exhibit direct antibacterial activity on their own. However, they displayed a significant effect in enhancing the efficacy of antibiotics, suggesting a potential role in potentiating their effects. Furthermore, fluorescence emission assays using ethidium bromide indicated that the derivatives could potentially block efflux pumps, as they exhibited fluorescence levels comparable to the positive control. To further investigate their inhibitory capacity, molecular docking studies were conducted in silico, revealing binding interactions similar to ciprofloxacin and carbonyl cyanide 3-chlorophenylhydrazone, known efflux pump inhibitors. These findings highlight the potential of Meldrum's acid derivatives as effective inhibitors of efflux pumps. By targeting these mechanisms, the derivatives offer a promising avenue to enhance the effectiveness of antibiotics and combat bacterial resistance. This study underscores the importance of exploring novel strategies in the fight against bacterial resistance and provides valuable insights into the potential of Meldrum's acid derivatives as efflux pump inhibitors. Further research and exploration in this field are warranted to fully exploit their therapeutic potential.
Collapse
Affiliation(s)
- Isaac Moura Araújo
- Department of Chemistry-Biology, Regional University of Cariri-URCA, Crato, Ceará, Brazil
| | | | | | | | - Saulo Relison Tintino
- Department of Chemistry-Biology, Regional University of Cariri-URCA, Crato, Ceará, Brazil
| | | | | | - Renata Salamoni
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau, Santa Catarina, Brazil
| | - Iêda Maria Begnini
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau, Santa Catarina, Brazil
| | - Ricardo Andrade Rebelo
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau, Santa Catarina, Brazil
| | | | | | | |
Collapse
|
3
|
Kumar B, Devi J, Dubey A, Tufail A, Antil N. Biological and computational investigation of transition metal(II) complexes of 2-phenoxyaniline-based ligands. Future Med Chem 2023; 15:1919-1942. [PMID: 37929611 DOI: 10.4155/fmc-2023-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Aim: In the 21st century, we are witness of continuous onslaughts of various pathogen deformities which are a major cause of morbidity and mortality worldwide. Therefore, to investigate the grave for these deformities, antioxidant, anti-inflammatory and antimicrobial biological activities were carried out against newly synthesized Schiff base ligands and their transition metal complexes, which are based on newly synthesized 2-phenoxyaniline and salicylaldehyde derivatives. Materials & methods: The synthesized compounds were characterized by various physiochemical studies, demonstrating the octahedral stereochemistry of the complexes. Results: The biological assessments revealed that complex 6 (3.01 ± 0.01 μM) was found to be highly active for oxidant ailments whereas complex 14 (7.14 ± 0.05 μM, 0.0041-0.0082 μmol/ml) was observed as highly potent for inflammation and microbial diseases. Conclusion: Overall, the biological and computational studies demonstrate that the nickel(II) complex 14 can act as an excellent candidate for pathogen deformities.
Collapse
Affiliation(s)
- Binesh Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Jai Devi
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai, Tamil Nadu, 600077, India
- Department of Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, 201310, India
| | - Aisha Tufail
- Department of Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, 201310, India
| | - Nidhi Antil
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
4
|
Kumar B, Devi J, Dubey A, Tufail A, Taxak B. Investigation of antituberculosis, antimicrobial, anti-inflammatory efficacies of newly synthesized transition metal(II) complexes of hydrazone ligands: structural elucidation and theoretical studies. Sci Rep 2023; 13:15906. [PMID: 37741819 PMCID: PMC10517985 DOI: 10.1038/s41598-023-42180-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
Tuberculosis disease is a serious threat to humans and spreading quickly worldwide, therefore, to find a potent drug, the synthesis of hydrazone ligands endowed Co(II), Ni(II), Cu(II), Zn(II) metal complexes were carried out and well characterized by numerous spectral and analytical techniques. The octahedral geometry of the complexes was confirmed by spectral analysis. Further, in vitro antituberculosis efficacy of the compounds (1-10) revealed that complexes (6), (9), (10) have highest potency to control TB malformation with 0.0028 ± 0.0013-0.0063 ± 0.0013 µmol/mL MIC value while Zn(II) complex (10) (0.0028 ± 0.0013 µmol/mL) has nearly four time potent to suppress TB disease in comparison of streptomycin (0.0107 ± 0.0011 µmol/mL). The antimicrobial and anti-inflammatory evaluations revealed that the complex (10) is more active with lowest MIC (0.0057-0.0114 µmol/mL) and IC50 (7.14 ± 0.05 µM) values, correspondingly which are comparable with their respective standard drugs. Furthermore, the theoretical studies such as molecular docking, DFT, MESP and ADMET were employed to authenticate the potency of HL2 hydrazone ligand (2) and its metal complexes (7-10) which revealed that the zinc(II) complex (10) might be utilized as novel drug candidate for tuberculosis dysfunctions. So, the present research gives a new insight for in vivo investigation of the compounds.
Collapse
Affiliation(s)
- Binesh Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Jai Devi
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India
- Department of Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Aisha Tufail
- Department of Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Bharti Taxak
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| |
Collapse
|
5
|
Zeng W, Wang X, Zhou T, Zhang Y. Crystal Structure, Photophysical Study, Hirshfeld Surface Analysis, and Nonlinear Optical Properties of a New Hydroxyphenylamino Meldrum's Acid Derivative. Molecules 2023; 28:molecules28052181. [PMID: 36903427 PMCID: PMC10004585 DOI: 10.3390/molecules28052181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The structural, photophysical, and vibrational properties of a new hydroxyphenylamino Meldrum's acid derivative, 3-((2-hydroxyphenylamino)methylene)-1,5-dioxaspiro[5.5]undecane-2,4-dione (HMD), were studied. The comparison of experimental and theoretical vibrational spectra can help understand basic vibration patterns and provides a better interpretation of IR spectra. The UV-Vis spectrum of HMD was computed using density functional theory (DFT)/B3LYP/6-311 G(d,p) basis set in the gas state, and the maximum wavelength was in accord with the experimental data. The molecular electrostatic potential (MEP) and Hirshfeld surface analysis confirmed O(1)-H(1A)···O(2) intermolecular hydrogen bonds in the HMD molecule. The natural bond orbital (NBO) analysis provided delocalizing interactions between π→π* orbitals and n→σ*/π* charge transfer transitions. Finally, the thermal gravimetric (TG)/differential scanning calorimeter (DSC) and the non-linear optical (NLO) properties of HMD were also reported.
Collapse
Affiliation(s)
- Wulan Zeng
- Department of Chemistry, Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
- Correspondence:
| | - Xia Wang
- Department of Chemistry, Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Tao Zhou
- Department of Chemistry, Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Yunju Zhang
- Key Laboratory of Photoinduced Functional Materials, School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| |
Collapse
|
6
|
Zeng W, Wang X, Li Y, Li X, Zhang Y. Structural, spectroscopic and computational studies of two new spirocompounds containing 2,3,4-trimethoxybenzyl group. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Elbadawy HA, Abd‐El‐Nabey BA, Ali AE, Elsayed EH. The development of an unexpected Cu(I)‐pyrazolo pyrimidine‐based complex: Synthesis, spectroscopic characterizations, and biological activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hemmat A. Elbadawy
- Chemistry Department, Faculty of Science Alexandria University Alexandria Egypt
| | | | - Ali El‐Dissouky Ali
- Chemistry Department, Faculty of Science Alexandria University Alexandria Egypt
| | - Eman Hassan Elsayed
- Chemistry Department, Faculty of Science Alexandria University Alexandria Egypt
| |
Collapse
|
8
|
Zeng W, Wang X, Zhang Y. Synthesis, Crystal Structures, and Density Functional Theory Studies of Two Salt Cocrystals Containing Meldrum's Acid Group. ACS OMEGA 2022; 7:25132-25139. [PMID: 35910121 PMCID: PMC9330170 DOI: 10.1021/acsomega.2c01761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two salt cocrystals, C31H34N4O8 (DDD) and C17H20N2O8 (MDD), were synthesized and their structures were determined by single-crystal X-ray diffraction. DDD is made up of one (C13H13O8)- anion, one (C9H11N2)+ cation, and one 5,6-dimethyl-1H-benzo[d]imidazole molecule. MDD consists of one (C4H7N2)+ cation and one (C13H13O8)- anion. DDD and MDD belong to the monoclinic, P21/c space group and triclinic, P-1 space group, respectively. A 1D-chained structure of DDD was constituted by N-H···N and N-H···O hydrogen bonds. However, a 1D-chained structure of MDD was bridged by N-H···O hydrogen bonds. Their density functional theory-optimized geometric structures with a B3LYP/6-311G(d,p) basis set fit well with those of crystallographic studies. By calculating their thermodynamic properties, the correlation equations of C 0 p,m , S 0 m , H 0 m , and temperature T were obtained. By comparing the experimental electronic spectra with the calculated electronic spectra, it is found that the PBEPBE/6-311G(d,p) method can simulate the UV-Vis spectra of DDD and MDD. In addition, the fluorescence spectra in the EtOH solution analysis show that the yellowish-green emission occurs at 570 nm (λex = 310 nm) for DDD and the purplish-blue emission occurs at 454 nm (λex = 316 nm) for MDD.
Collapse
Affiliation(s)
- Wulan Zeng
- Department
of Chemistry, Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xia Wang
- Department
of Chemistry, Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Yunju Zhang
- School
of Chemistry and Chemical Engineering, Key Laboratory of Photoinduced
Functional Materials, Mianyang Normal University, Mianyang 621000, PR China
| |
Collapse
|
9
|
Kumar SS, Sadasivan V, Meena SS, Sreepriya R, Biju S. Synthesis, structural characterization and biological studies of Ni(II), Cu(II) and Fe(III) complexes of hydrazone derived from 2-(2-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)hydrazinyl)benzoic acid. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Hassan EA, Ebrahium MM, Ebrahium AM. Metal complexes of hydrazone‐oxime derivative as promising in‐vitro antimicrobial agents against some fungal and bacterial strains. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Essam A. Hassan
- Department of Biology, college of Science and Arts at Khulais University of Jeddah Jeddah Saudi Arabia
| | - Mohamad M. Ebrahium
- Department of Chemistry, college of Science and Arts at Khulais University of Jeddah Jeddah Saudi Arabia
| | - Adel M. Ebrahium
- Department of Chemistry, Faculty of Science Menoufia University Shebin El‐Kom Egypt
| |
Collapse
|
11
|
Katsyuba S, Mustakimova L, Gerasimova T, Burganov TI, Sirazieva A, Voronina JK, Shamsutdinova LR, Rizvanov IK, Mamedov VA. Synthesis and Computationally Assisted Spectroscopic Study of Tautomerism in 3-(Phenyl(2-arylhydrazineylidene)methyl)quinoxalin-2(1H)-ones. NEW J CHEM 2022. [DOI: 10.1039/d2nj03499a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recently developed efficient protocol combining implicit and explicit, accurate quantum mechanical modeling of the condensed state [Katsyuba et al., J. Chem. Phys. 155, 024507 (2021)] is used to describe...
Collapse
|
12
|
Ru3+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+ uni-metallic complexes of 3-(-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) methylene) hydrazono)indolin-2-one, preparation, structure elucidation and antibacterial activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Shakdofa MME, Saleem QM, Shakdofa AME. Structure investigation, density functional theory, and biostudy of synthesized dihydrazone incorporating isatin moiety and its homo‐bimetallic complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohamad M. E. Shakdofa
- Department of Chemistry, College of Science and Arts at Khulais University of Jeddah Jeddah Saudi Arabia
| | - Qaid M. Saleem
- Department of Chemistry, College of Science and Arts at Khulais University of Jeddah Jeddah Saudi Arabia
| | - Adel M. E. Shakdofa
- Department of Chemistry, Faculty of Science Menoufia University Shebin El‐Kom Egypt
| |
Collapse
|
14
|
Gökce H, Alpaslan G, Kaya S, Çakır N. Structural, Bioactivity, Molecular Docking, Spectroscopic and Electronic Properties of a Synthesized Meldrum's Acid Derivative. ChemistrySelect 2021. [DOI: 10.1002/slct.202100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Halil Gökce
- Vocational School of Health Services Giresun University 28200 Giresun Turkey
| | - Gökhan Alpaslan
- Vocational School of Health Services Giresun University 28200 Giresun Turkey
| | - Serdal Kaya
- Department of Aeronautical Faculty of Aviation and Space Sciences Necmettin Erbakan University 42090 Konya Turkey
| | - Nezaket Çakır
- Department of Chemistry Faculty of Art and Science Giresun University 28200 Giresun Turkey
| |
Collapse
|
15
|
2-[(2E)-2-(3‑chloro‑2-fluorobenzylidene)hydrazinyl]pyridine: Synthesis, spectroscopic, structural properties, biological activity and theoretical analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Synthesis, characterization, pharmacological evaluation and molecular docking studies of benzothiazole azo derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Hydrazone complexes of ruthenium(II): Synthesis, crystal structures and catalytic applications in N-alkylation reactions. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Shebl M, Saleh AA, Khalil SME, Dawy M, Ali AAM. Synthesis, spectral, magnetic, DFT calculations, antimicrobial studies and phenoxazinone synthase biomimetic catalytic activity of new binary and ternary Cu(II), Ni(II) and Co(II) complexes of a tridentate ONO hydrazone ligand. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1770794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Magdy Shebl
- Faculty of Education, Department of Chemistry, Ain Shams University, Cairo, Egypt
| | - Akila A. Saleh
- Faculty of Education, Department of Chemistry, Ain Shams University, Cairo, Egypt
| | - Saied M. E. Khalil
- Faculty of Education, Department of Chemistry, Ain Shams University, Cairo, Egypt
| | - Magdah Dawy
- Department of Physical Chemistry, National Research Centre, Dokki, Egypt
| | - Amira A. M. Ali
- Faculty of Education, Department of Chemistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
19
|
El-Atawy MA, Hegazi AH, Al Khalaf M, Amer A. The structure elucidation of the isomeric mixture of 3-[L-threo-2,3,4-tri -hydroxy-1-(phenyl-hydrazono)butyl] quinoxalin-2(1H)-one in dimethyl sulfoxide solution revisited: experimental and theoretical study. Struct Chem 2020. [DOI: 10.1007/s11224-019-01445-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Sreepriya R, Kumar SS, V S, S B, Meena SS. Synthesis, characterization & biological studies of Mn(II), Fe(III) and Co(II) complexes of (Z)-1, 5-dimethyl-4-(2-(2-oxopropylidene) hydrazinyl)-2-phenyl-1H-pyrazol-3(2H)-one. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Luo XQ, Han YJ, Xue LW. Synthesis, Characterization, Crystal Structures and Antimicrobial Activity of Oxidovanadium(V) Complexes with Mixed Ligands. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Kumar SS, Sreepriya R, Biju S, Sadasivan V. Synthesis, crystal structure and spectroscopic studies of trivalent Fe(III) and mixed valent ion-pair Co(II,III) complexes with 5-(2-(2-hydroxyphenyl)hydrazono)-2,2-dimethyl-4,6-dione. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Venugopal N, Krishnamurthy G, Bhojyanaik H, Murali Krishna P. Synthesis, spectral characterization and biological studies of Cu (II), Co (II) and Ni (II) complexes of azo dye ligand containing 4‒amino antipyrine moiety. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
|