1
|
Chen K, Zhu X, Sun R, Zhao L, Zhao J, Wu X, Wang C, Zeng H. Oleanolic acid derivative self-assembled aggregates based on heparin and chitosan for breast cancer therapy. Int J Biol Macromol 2024; 277:134431. [PMID: 39147629 DOI: 10.1016/j.ijbiomac.2024.134431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
Abstract
Oleanolic acid is an active ingredient from natural products with anti-breast cancer activity. However, the poor solubility in water and low bioavailability have limited its effectiveness in clinic. To improve the anticancer activity of oleanolic acid, we synthesized a novel oleanolic quaternary ammonium (QDT), which, driven by electrostatic interactions, was introduced into heparin and coated with chitosan to obtain a QDT/heparin/chitosan nanoaggregate (QDT/HEP/CS NAs). QDT/HEP/CS NAs showed the negative zeta potential (-35.01 ± 4.38 mV), suitable mean particle size (150.45 ± 0.68 nm) with strip shape, and high drug loading (36 %). The coated chitosan had strong anti-leakage characteristics toward QDT under physiological conditions. More importantly, upon sustained release in tumor cells, QDT could significantly decrease the mitochondrial membrane potential and induce apoptosis of breast cancer cells. Further in vivo antitumor study on 4 T1 tumor-bearing mice confirmed the enhanced anticancer efficacy of QDT/HEP/CS NAs via upregulation of caspase-3, caspase-9 and cytochrome C, which was attributed to the high accumulation in tumor via the enhanced permeability and retention effect. Moreover, QDT/HEP/CS NAs significantly enhanced the biosafety and biocompatibility of QDT in vitro and in vivo. Collectively, the development of QDT/HEP/CS NAs with high antitumor activity, favorable biodistribution and good biocompatibility provided a safe, facile and promising strategy to improve the anti-cancer effect of traditional Chinese medicine ingredients.
Collapse
Affiliation(s)
- Kun Chen
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xin Zhu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ruiqin Sun
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Junwei Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiangxiang Wu
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Can Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Huahui Zeng
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Pan F, Wu X, Gong L, Xu H, Yuan Y, Lu J, Zhang T, Liu J, Shang X. Dextran sulfate acting as a chaperone-like component on inhibition of amorphous aggregation and enhancing thermal stability of ovotransferrin. Food Chem 2024; 445:138720. [PMID: 38359570 DOI: 10.1016/j.foodchem.2024.138720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
The tendency of ovotransferrin (OVT) to unfold and aggregate under 60 °C severely restricted sterilization temperature during egg processing. Searching for efficient strategies to improve OVT thermal stability is essential for improving egg product quality and processing suitability. Here, we investigated the effect of sulfate polysaccharide (dextran sulfate, DS) on heat-induced aggregation of OVT. We found that DS can effectively suppress amorphous aggregation of OVT at pH 7.0 after heating. Strikingly, the addition of 5 µM DS fully suppressed insoluble aggregates formation of 0.5 mg/mL OVT. Structure analysis confirmed that DS preserves nearly the entire secondary and tertiary structure of OVT during heating. The steric hindrance effect arising from strong electrostatic interactions between OVT and DS, coupled with reduced OVT hydrophobicity, is the underlying mechanism in suppressing protein-protein interactions, thus enhancing thermal stability. These findings suggest DS could act as protein stabilizers and chaperones, enhancing the thermostability of heat-sensitive proteins.
Collapse
Affiliation(s)
- Fengguang Pan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xinling Wu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Lingling Gong
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Haojie Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yixin Yuan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Jinming Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China; College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
3
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
4
|
Li J, Wang X, Chang C, Gu L, Su Y, Yang Y, Agyei D, Han Q. Chicken Egg White Gels: Fabrication, Modification, and Applications in Foods and Oral Nutraceutical Delivery. Foods 2024; 13:1834. [PMID: 38928777 PMCID: PMC11202995 DOI: 10.3390/foods13121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Chicken egg white (EW) proteins possess various useful techno-functionalities, including foaming, gelling or coagulating, and emulsifying. The gelling property is one of the most important functionalities of EW proteins, affecting their versatile applications in the food and pharmaceutical industries. However, it is challenging to develop high-quality gelled foods and innovative nutraceutical supplements using native EW and its proteins. This review describes the gelling properties of EW proteins. It discusses the development and action mechanism of the physical, chemical, and biological methods and exogenous substances used in the modification of EW gels. Two main applications of EW gels, i.e., gelling agents in foods and gel-type carriers for nutraceutical delivery, are systematically summarized and discussed. In addition, the research and technological gaps between modified EW gels and their applications are highlighted. By reviewing the new modification strategies and application trends of EW gels, this paper provides insights into the development of EW gel-derived products with new and functional features.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xuechun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
5
|
Yang C, Merlin D. Unveiling Colitis: A Journey through the Dextran Sodium Sulfate-induced Model. Inflamm Bowel Dis 2024; 30:844-853. [PMID: 38280217 PMCID: PMC11063560 DOI: 10.1093/ibd/izad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 01/29/2024]
Abstract
Animal models of inflammatory bowel disease (IBD) are valuable tools for investigating the factors involved in IBD pathogenesis and evaluating new therapeutic options. The dextran sodium sulfate (DSS)-induced model of colitis is arguably the most widely used animal model for studying the pathogenesis of and potential treatments for ulcerative colitis (UC), which is a primary form of IBD. This model offers several advantages as a research tool: it is highly reproducible, relatively easy to generate and maintain, and mimics many critical features of human IBD. Recently, it has also been used to study the role of gut microbiota in the development and progression of IBD and to investigate the effects of other factors, such as diet and genetics, on colitis severity. However, although DSS-induced colitis is the most popular and flexible model for preclinical IBD research, it is not an exact replica of human colitis, and some results obtained from this model cannot be directly applied to humans. This review aims to comprehensively discuss different factors that may be involved in the pathogenesis of DSS-induced colitis and the issues that should be considered when using this model for translational purposes.
Collapse
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| |
Collapse
|
6
|
Akamo D, Cladek B, Goswami M, Gluesenkamp KR, Rios O, Keffer DJ. Nanoscale Stabilization Mechanism of Sodium Sulfate Decahydrate at Polyelectrolyte Interfaces. ACS OMEGA 2024; 9:18051-18061. [PMID: 38680312 PMCID: PMC11044206 DOI: 10.1021/acsomega.3c09796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Sodium sulfate decahydrate (SSD) is a low-cost phase-change material (PCM) for thermal energy storage applications that offers substantial melting enthalpy and a suitable temperature range for near-ambient applications. However, SSD's consistent phase separation with decreased melting enthalpy over repeated thermal cycles limits its application as a PCM. Sulfonated polyelectrolytes, such as dextran sulfate sodium (DSS), have shown great effectiveness in preventing phase separation in SSD. However, there is limited understanding of the stabilization mechanism of SSD by DSS at the atomic length and time scales. In this work, we investigate SSD stabilization via DSS using neutron scattering and molecular dynamics (MD) simulations. Neutron scattering and pair distribution function analysis revealed the structural evolution of the PCM samples below and above the phase change temperatures. MD simulations revealed that water from the hydrate structure migrates from the hydrate crystal to the SSD-DSS interfacial region upon melting. The water is stabilized at this interface by aggregation around the hydrophilic sulfonic acid groups attached to the backbone of the polyelectrolyte. This architecture retains water near the dehydrated sodium sulfate, preventing phase separation and, consequently, stabilizing SSD rehydration. This work provides atomistic insight into selecting and designing stable and high-performance PCMs for heating and cooling applications in building technologies.
Collapse
Affiliation(s)
- Damilola
O. Akamo
- The
Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
- Buildings
and Transportation Sciences Division, Oak
Ridge National Laboratory, Oak
Ridge, Tennessee 37830, United States
| | - Bernadette Cladek
- Materials
Science and Engineering Department, University
of Tennessee, Knoxville, Tennessee 37996, United States
| | - Monojoy Goswami
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Kyle R. Gluesenkamp
- Buildings
and Transportation Sciences Division, Oak
Ridge National Laboratory, Oak
Ridge, Tennessee 37830, United States
| | - Orlando Rios
- Materials
Science and Engineering Department, University
of Tennessee, Knoxville, Tennessee 37996, United States
| | - David J. Keffer
- Materials
Science and Engineering Department, University
of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
7
|
Yin Q, Wu L, Zhang X, Zheng Z, Luo S, Zhong X, Zhao Y. Preparation of high complex concentration emulsion stabilized by soy protein/dextran sulfate composite particles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37185886 DOI: 10.1002/jsfa.12663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Soy protein isolate (SPI) could be used as an emulsifier to stabilize emulsions, while SPI is unstable under low acidic conditions. The stable composite particles of SPI and dextran sulfate (DS) could be formed by the electrostatic interaction at the pH was 3.5. And the SPI/DS composite particles were used to prepare the high complex concentration emulsion. The stabilization properties of high complex concentration emulsion were investigated. RESULTS Compared to uncompounded SPI, the particle size of SPI/DS composite particles was smaller at 1.52 μm, and the absolute value of the potential increased to 19.9 mV when the mass ratio of SPI to DS was 1:1 and the pH was 3.5. With the DS ratio increased, the solubility of the composite particles increased to 14.44 times of the untreated protein at pH 3.5, while the surface hydrophobicity decreased. Electrostatic interactions and hydrogen bonds were the main forces between SPI and DS, and DS was electrostatically adsorbed on the surface of SPI. The emulsion stability significantly enhanced with the increase of complex concentration (38.88 times higher than at 1% concentration), the emulsion average droplet size was the lowest (9.64 μm), and the absolute value of potential was the highest (46.67 mV) when the mass ratio of SPI to DS was 1:1 and the complex concentration of 8%. The stability of the emulsion against freezing was improved. CONCLUSION The SPI/DS complex has high solubility and stability under low acidic conditions, and the SPI/DS complex' emulsion has a well stability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Yin
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Liang Wu
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Xinli Zhang
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Shuizhong Luo
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Xiyang Zhong
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Yanyan Zhao
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| |
Collapse
|
8
|
Burova TV, Grinberg NV, Dubovik AS, Plashchina IG, Usov AI, Grinberg VY. Energetics and mechanism of β-lactoglobulin binding to dextran sulfate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Liu J, Chai J, Yuan Y, Zhang T, Saini RK, Yang M, Shang X. Dextran sulfate facilitates egg white protein to form transparent hydrogel at neutral pH: Structural, functional, and degradation properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107094] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Wang P, Zhang C, Zou Y, Li Y, Zhang H. Immobilization of lysozyme on layer-by-layer self-assembled electrospun nanofibers treated by post-covalent crosslinking. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Liu J, Chai J, Zhang T, Yuan Y, Saini RK, Xu M, Li S, Shang X. Phase behavior, thermodynamic and rheological properties of ovalbumin/dextran sulfate: Effect of biopolymer ratio and salt concentration. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Joseph A, Nyambura CW, Bondurant D, Corry K, Beebout D, Wood TR, Pfaendtner J, Nance E. Formulation and Efficacy of Catalase-Loaded Nanoparticles for the Treatment of Neonatal Hypoxic-Ischemic Encephalopathy. Pharmaceutics 2021; 13:1131. [PMID: 34452092 PMCID: PMC8400001 DOI: 10.3390/pharmaceutics13081131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is the leading cause of permanent brain injury in term newborns and currently has no cure. Catalase, an antioxidant enzyme, is a promising therapeutic due to its ability to scavenge toxic reactive oxygen species and improve tissue oxygen status. However, upon in vivo administration, catalase is subject to a short half-life, rapid proteolytic degradation, immunogenicity, and an inability to penetrate the brain. Polymeric nanoparticles can improve pharmacokinetic properties of therapeutic cargo, although encapsulation of large proteins has been challenging. In this paper, we investigated hydrophobic ion pairing as a technique for increasing the hydrophobicity of catalase and driving its subsequent loading into a poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticle. We found improved formation of catalase-hydrophobic ion complexes with dextran sulfate (DS) compared to sodium dodecyl sulfate (SDS) or taurocholic acid (TA). Molecular dynamics simulations in a model system demonstrated retention of native protein structure after complexation with DS, but not SDS or TA. Using DS-catalase complexes, we developed catalase-loaded PLGA-PEG nanoparticles and evaluated their efficacy in the Vannucci model of unilateral hypoxic-ischemic brain injury in postnatal day 10 rats. Catalase-loaded nanoparticles retained enzymatic activity for at least 24 h in serum-like conditions, distributed through injured brain tissue, and delivered a significant neuroprotective effect compared to saline and blank nanoparticle controls. These results encourage further investigation of catalase and PLGA-PEG nanoparticle-mediated drug delivery for the treatment of neonatal brain injury.
Collapse
Affiliation(s)
- Andrea Joseph
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (A.J.); (C.W.N.); (D.B.); (D.B.); (J.P.)
| | - Chris W. Nyambura
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (A.J.); (C.W.N.); (D.B.); (D.B.); (J.P.)
| | - Danielle Bondurant
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (A.J.); (C.W.N.); (D.B.); (D.B.); (J.P.)
| | - Kylie Corry
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; (K.C.); (T.R.W.)
| | - Denise Beebout
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (A.J.); (C.W.N.); (D.B.); (D.B.); (J.P.)
| | - Thomas R. Wood
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; (K.C.); (T.R.W.)
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (A.J.); (C.W.N.); (D.B.); (D.B.); (J.P.)
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (A.J.); (C.W.N.); (D.B.); (D.B.); (J.P.)
| |
Collapse
|
13
|
Attri A, Thakur D, Kaur T, Sensale S, Peng Z, Kumar D, Singh RP. Nanoparticles Incorporating a Fluorescence Turn-on Reporter for Real-Time Drug Release Monitoring, a Chemoenhancer and a Stealth Agent: Poseidon's Trident against Cancer? Mol Pharm 2020; 18:124-147. [PMID: 33346663 DOI: 10.1021/acs.molpharmaceut.0c00730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rate and extent of drug release under physiological conditions is a key factor influencing the therapeutic activity of a formulation. Real-time detection of drug release by conventional pharmacokinetics approaches is confounded by low sensitivity, particularly in the case of tissue-targeted novel drug delivery systems, where low concentrations of the drug reach systemic circulation. We present a novel fluorescence turn-on platform for real-time monitoring of drug release from nanoparticles based on reversible fluorescence quenching in fluorescein esters. Fluorescein-conjugated carbon nanotubes (CNTs) were esterified with methotrexate in solution and solid phase, followed by supramolecular functionalization with a chemoenhancer (suramin) or/and a stealth agent (dextran sulfate). Suramin was found to increase the cytotoxicity of methotrexate in A549 cells. On the other hand, dextran sulfate exhibited no effect on cytotoxicity or cellular uptake of CNTs by A549 cells, while a decrease in cellular uptake of CNTs and cytotoxicity of methotrexate was observed in macrophages (RAW 264.7 cells). Similar results were also obtained when CNTs were replaced with graphene. Docking studies revealed that the conjugates are not internalized by folate receptors/transporters. Further, docking and molecular dynamics studies revealed the conjugates do not exhibit affinity toward the methotrexate target, dihydrofolate reductase. Molecular dynamics studies also revealed that distinct features of dextran-CNT and suramin-CNT interactions, characterized by π-π interactions between CNTs and dextran/suramin. Our study provides a simple, cost-effective, and scalable method for the synthesis of nanoparticles conferred with the ability to monitor drug release in real-time. This method could also be extended to other drugs and other types of nanoparticles.
Collapse
Affiliation(s)
- Arjun Attri
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India
| | - Deepak Thakur
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India
| | - Taranpreet Kaur
- Department of Biotechnology, Government Mohindra College, Patiala, Punjab 147 001, India
| | - Sebastian Sensale
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, United States
| | - Zhangli Peng
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Bioengineering, University of Illinois, Chicago, Illinois 60612, United States
| | - Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India
| | - Raman Preet Singh
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India.,Department of Pharmacy, Government Polytechnic College, Bathinda, Punjab 151 001, India
| |
Collapse
|
14
|
Yin X, Xie H, Li R, Yan S, Yin H. Regulating association strength between quaternary ammonium chitosan and sodium alginate via hydration. Carbohydr Polym 2020; 255:117390. [PMID: 33436219 DOI: 10.1016/j.carbpol.2020.117390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Studies on interactions between oppositely charged polysaccharides have gathered great interest. We proposed that the association between oppositely charged polymers could be regulated via hydration. A comparison study was carried out by using quaternary chitosan with different counterions(Cl-, Ac-, OH-) and sodium alginate. The results showed that the association between quaternary chitosan with less hydrated counter anion Cl- and sodium alginate was weaker than that between quaternary chitosan with more hydrated counter anion Ac- and sodium alginate. There was a pH transition point of thermal change of association between oppositely charged polymers, as the solution's pH had more effect on the hydration of polymers than counter ions. Further studies showed that a fraction of Cl- was still attracted by polycation in the complex and competed with the interaction of polyanion after complexation. The competitive combination was critical for the property (such as self healing behavior) of the carbohydrate polymer complex.
Collapse
Affiliation(s)
- Xiao Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Department of Materials Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Hongguo Xie
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Ruixin Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Institute of Environmental Systems Biology, Dalian Maritime University, Dalian, 116026, China
| | - Shenggang Yan
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
15
|
Pyataev NA, Petrov PS, Minaeva OV, Zharkov MN, Kulikov OA, Kokorev AV, Brodovskaya EP, Yurlov IA, Syusin IV, Zaborovskiy AV, Balykova LA. Amylase-Sensitive Polymeric Nanoparticles Based on Dextran Sulfate and Doxorubicin with Anticoagulant Activity. Polymers (Basel) 2019; 11:E921. [PMID: 31130638 PMCID: PMC6571953 DOI: 10.3390/polym11050921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 11/30/2022] Open
Abstract
This study looked into the synthesis and study of Dextrane Sulfate-Doxorubicin Nanoparticles (DS-Dox NP) that are sensitive to amylase and show anticoagulant properties. The particles were obtained by the method of solvent replacement. They had a size of 305 ± 58 nm, with a mass ratio of DS:Dox = 3.3:1. On heating to 37 °C, the release of Dox from the particles was equal to 24.2% of the drug contained. In the presence of amylase, this ratio had increased to 42.1%. The study of the biological activity of the particles included an assessment of the cytotoxicity and the effect on hemostasis and antitumor activity. In a study of cytotoxicity on the L929 cell culture, it was found that the synthesized particles had less toxicity, compared to free doxorubicin. However, in the presence of amylase, their cytotoxicity was higher than the traditional forms of the drug. In a study of the effect of DS-Dox NP on hemostasis, it was found that the particles had a heparin-like anticoagulant effect. Antitumor activity was studied on the model of ascitic Zaidel hepatoma in rats. The frequency of complete cure in animals treated with the DS-Dox nanoparticles was higher, compared to animals receiving the traditional form of the drug.
Collapse
Affiliation(s)
- Nikolay A Pyataev
- National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia.
| | - Pavel S Petrov
- National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia.
| | - Olga V Minaeva
- National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia.
| | - Mikhail N Zharkov
- National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia.
| | - Oleg A Kulikov
- National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia.
| | - Axeksandr V Kokorev
- National Research Nuclear University MEPhI (IATE MEPHI), 31 Kashirskoe shosse, Moscow 115409, Russia.
| | - Ekaterina P Brodovskaya
- National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia.
| | - Ivan A Yurlov
- National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia.
| | - Ilya V Syusin
- National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia.
| | - Andrey V Zaborovskiy
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, 20/1 Delegatskaya Str., Moscow 127473, Russia.
| | - Larisa A Balykova
- National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia.
| |
Collapse
|
16
|
Benhalima T, Ferfera-Harrar H. Eco-friendly porous carboxymethyl cellulose/dextran sulfate composite beads as reusable and efficient adsorbents of cationic dye methylene blue. Int J Biol Macromol 2019; 132:126-141. [PMID: 30926505 DOI: 10.1016/j.ijbiomac.2019.03.164] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022]
Abstract
Eco-friendly hydrogel composite beads based on crosslinked-carboxymethyl cellulose (CMC) and dextran sulfate (DS) embedded within network were prepared using ionotropic gelation in presence of sodium n-dodecyl sulfate (SDS) as pore-forming template. The milligels composites C/Dx were characterized by FTIR, SEM/EDX and TGA analyses. The composites exhibited porous structure and enhance in swelling properties with enriching DS as well as pH-sensitivity. The effect of DS on adsorption of composites for cationic dye methylene blue (MB) was investigated by changing influencing factors: pH, adsorbent dosage, time contact, dye concentration, and temperature. The results revealed that adsorption performances were remarkably improved by increasing DS content into beads. Kinetics and isotherm adsorption studies revealed pseudo second-order and Langmuir isotherm as befitting models. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 82 mg g-1 for C/D0 to 526 mg g-1 for C/D1. Thermodynamic study revealed spontaneous and endothermic process nature. Furthermore, milligels displayed good reusability after five adsorption/desorption cycles and with an augment in their removal ability compared to starting ones, reaching 714 mg g-1 for R-C/D1. In view of easy preparation and recovery, effectiveness adsorption and good regeneration, the composites could be applied as low-cost adsorbents in wastewater treatment.
Collapse
Affiliation(s)
- Tayeb Benhalima
- Materials Polymer Laboratory, Department of Macromolecular Chemistry, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria
| | - Hafida Ferfera-Harrar
- Materials Polymer Laboratory, Department of Macromolecular Chemistry, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria.
| |
Collapse
|