1
|
Revanna BN, Kamat V, Swamynayaka A, Harish KK, Venkatesha K, Madegowda M, Poojary B, Majani SS, Kollur SP. Chalcone-based Turn-Off Chemosensor for Selective and Susceptible Detection of Fe 2+ Ions: Spectroscopic and DFT Investigations. J Fluoresc 2025; 35:1781-1795. [PMID: 38457072 DOI: 10.1007/s10895-024-03646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Herein, in this report we are introducing newly synthesized chalcone derivative, "(E)-1-phenyl-3-(4-((5-(((Z)-thiophen-2-ylmethylene)amino)-1,3,4-thiadiazol-2-yl)thio)phenyl)prop-2-en-1-one" (5), as a chemosensor to detect Fe2+ metal ions in HEPES buffer solution of pH 7.5. Spectroscopic techniques were used to confirm the synthesized sensor. To determine the chemical reactivity and molecular stability of the probe, a frontier molecular orbitals investigation was carried out. A molecular electrostatic potential map was investigated to know the binding site of 5 for metal ion coordination. The theoretical absorption and fluorescence emission properties were estimated and correlated with the experimental observations. The sensor showed excellent selectivity for Fe2+ compared to all other studied metal ions. The fluorescence binding studies were carried out by adding different amounts of Fe2+ ions for a fixed concentration of probe 5. The inclusion of Fe2+ ions resulted in a decrease in fluorescence intensity with a bathochromic shift of emission wavelength of 5 due to the 5-Fe2+ complexation. The binding affinity value for the probe was found to be 576.2 M-1 with the help of the Stern-Volmer plot. The Job's plot and mass spectra supported the 2:1 (5: Fe2+) stoichiometry of complex formation. The detection limit and limit of quantification of 5 for Fe2+ were calculated to be 4.79 × 10-5 M and 14.54 × 10-5 M. Further, in addition to this, the photophysical parameters such as fluorescence lifetime of 5 and 5-Fe2+ complex measured to be 0.1439 and 0.1574 ns. The quantum yield of 5 and 5-Fe2+ was found to be 0.0398 and 0.0376. All these experimental findings revealed that probe 5 has excellent selectivity and sensitivity for Fe2+ ions.
Collapse
Affiliation(s)
- Bhavya Nelligere Revanna
- Department of Physics, Vidyavardhaka College of Engineering, Mysuru, 570002, Karnataka, India
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India
| | - Vinuta Kamat
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangalore, 574199, Karnataka, India
| | - Ananda Swamynayaka
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India
| | - Keshav Kumar Harish
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India
| | - Keerthikumara Venkatesha
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India
| | - Mahendra Madegowda
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India.
| | - Boja Poojary
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangalore, 574199, Karnataka, India
| | - Sanjay S Majani
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, 570026, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, 570026, Karnataka, India
| |
Collapse
|
2
|
Manwal A Mekoung P, Malloum A, Govindarajan M, Mballa RN, Patouossa I, Abouem A Zintchem A, Nanseu CP, Mbouombouo IN. Spectroscopic properties (FT-IR, NMR and UV) and DFT studies of amodiaquine. Heliyon 2023; 9:e22187. [PMID: 38076079 PMCID: PMC10709190 DOI: 10.1016/j.heliyon.2023.e22187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 06/19/2024] Open
Abstract
Amodiaquine (AQ) was synthesized by a condensation reaction and characterized by experimental FT-IR, 1H and 13C nuclear magnetic resonance (NMR) and UV spectroscopies. In the present work, Density Functional Theory (DFT) calculations. The structural and spectroscopic (FT-IR, 1H and 13C NMR and UV) data of amodiaquine molecule in ground state have been investigated by using Density Functional Theory (DFT). The calculations have been performed at the using B3LYP method with 6-311++G(d,p) and 6-311++G(2d, p) basis sets theory level were performed, first, to confirm its structure, then to explain its reactive nature through its molecular properties such as natural charges, local and global reactivity descriptors or natural bond orbital (NBO). Afterwards, the calculated properties were compared with experimental results. The 1H and 13C NMR chemical shifts were calculated by using the gauge-independent atomic orbital (GIAO) method, while the electronic UV-Vis spectrum is predicted using the time-dependent density functional theory (TD-DFT). Globally, the computerized results showed good agreement close similarity with the experimental values. The molecular properties such as natural charges, local and global reactivity descriptors, molecular electrostatic potential (MEP), natural bond orbital (NBO) of title molecule were calculated insights into the stability, reactivity and reactive sites on the molecule. The calculated energy band gap (ELUMO-EHOMO) value of AQ was found to be 4.09 eV suggesting that it could be considered as a hard molecule with high stability, supported by global reactivity descriptors. Molecular electrostatic potential (MEP) analysis revealed heteroatoms (oxygen and nitrogen) as the most putative nucleophilic sites when hydrogen atoms to which they are linked appear as electrophilic sites. The potential use of amodiaquine as non-linear optical (NLO) material and its thermodynamic indicators have also been assessed.
Collapse
Affiliation(s)
- Pélagie Manwal A Mekoung
- Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P. O. Box 47 Yaoundé, Cameroon
- National Drug Quality Control and Valuation Laboratory, P.O. Box 12216 Yaoundé, Cameroon
| | - Alhadji Malloum
- Department of Physics, Faculty of Science, University of Maroua, P.O. Box 46 Maroua, Cameroon
- Department of Chemistry, University of the Free State, P. O. Box 339, Bloemfontein 9300, South Africa
| | - Munusamy Govindarajan
- Department of Physics, Avvivayar Government College for Women, Karaikal, Puducherry, India
- Arrignar Anna Govermnet Arts and Science College, Karaikal, Puducherry, India
| | - Rose Ngono Mballa
- National Drug Quality Control and Valuation Laboratory, P.O. Box 12216 Yaoundé, Cameroon
- Department of pharmacology and traditional medicine, FMSB, University of Yaoundé I, P. O. Box 1364 Yaoundé, Cameroon
| | - Issofa Patouossa
- Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon
| | - Auguste Abouem A Zintchem
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P. O. Box 47 Yaoundé, Cameroon
| | - Charles P.N. Nanseu
- Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon
| | - Ibrahim N. Mbouombouo
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P. O. Box 47 Yaoundé, Cameroon
- Department of Applied Chemistry, Faculty of Science, University of Ebolowa, PO. Box 812 Ebolowa, Cameroon
| |
Collapse
|
3
|
Studies on New Imidazo[2,1-b][1,3,4]thiadiazole Derivatives: Molecular Structure, Quantum Chemical Computational, and In silico Study of Inhibitory Activity Against Pim-1 Protein by using Molecular Modelling Methods and ADMET Profiling. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Design, Synthesis, Characterization, and Analysis of Antimicrobial Property of Novel Benzophenone Fused Azetidinone Derivatives through In Vitro and In Silico Approach. Curr Issues Mol Biol 2022; 45:92-109. [PMID: 36661493 PMCID: PMC9857151 DOI: 10.3390/cimb45010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
A sequence of novel 2-(4-benzoyl-2-methyl-phenoxy)-N-(3-chloro-2-oxo-4-phenyl-azetidin-1-yl)-acetamide analogues 9(a−n) were synthesized by multistep synthesis. The newly synthesized compounds were well characterized, and their antimicrobial activities were carried out by disc diffusion and broth dilution methods. Further, all the novel series of compounds (9a−n), were tested against a variety of bacterial and fungal strains in comparison to Ketoconazole, Chloramphenicol, and Amoxicillin as standard drugs, respectively. Compounds 9a, 9e, and 9g as a lead molecule demonstrated a good inhibition against tested strains. Further, molecular docking studies have been performed for the potent compounds to check the three-dimensional geometrical view of the ligand binding to the targeted proteins.
Collapse
|
5
|
Design, synthesis, characterization and analysis of anti-inflammatory properties of novel N-(benzo[d]thiazol-2-yl)-2-[phenyl(2-(piperidin-1-yl) ethylamino] benzamides and N-(benzo[d]thiazol-2-yl)-2-[phenyl (2-morpholino) ethylamino] benzamides derivatives through in vitro and in silico approach. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
One-pot reproducible Sonosynthesis of trans-[Br(NՈN’)Cu(μBr)2Cu(NՈN’)Br] dimer:[H….Br S(9)] synthons, spectral, DFT/XRD/HSA, thermal, docking and novel LOX/COX enzyme inhibition. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Synthesis, analgesic, anti-inflammatory, ulcerogenic evaluation, and docking study of (benzoylphenoxy)-N-{5-[2-methylphenyl-6-chlorobenzoxazole]} acetamides as COX/5-LOX inhibitor. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Third-order nonlinear optical studies of Bis(4-methylbenzylammonium) tetrachloridocuprate metal-organic crystal with optical limiting behaviour: Experimental and Theoretical Investigations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Nagesh KM, Prashanth T, Khamees HA, Khanum SA. Synthesis, analgesic, anti-inflammatory, COX/5-LOX inhibition, ulcerogenic evaluation, and docking study of benzimidazole bearing indole and benzophenone analogs. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Jyothi M, Banumathi, Zabiulla, Sherapura A, Khamees HA, Prabhakar B, Khanum SA. Synthesis, structure analysis, DFT calculations and energy frameworks of new coumarin appended oxadiazoles, to regress ascites malignancy by targeting VEGF mediated angiogenesis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Ahamed JI, Ramkumaar G, Kamalarajan P, Narendran K, Valan M, Sundareswaran T, Sundaravadivel T, Venkatadri B, Bharathi S. Novel quinoxaline derivatives of 2, 3-diphenylquinoxaline-6-carbaldehyde and 4, 4′-(6-methylquinoxaline-2,3-diyl)bis(N,N-diphenylaniline): Synthesis, structural, DFT-computational, molecular docking, antibacterial, antioxidant, and anticancer studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Khamees HA, Madegowda M, Ananda S, Sangappa Y, Al-Ostoot FH, Abad N. Synthesis, molecular structure, DFT studies, in silico docking and molecular dynamics simulations of 2,6 dimethoxychalcone derivatives as BRD4 inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Radder SB, Melavanki R, Hiremath SM, Kusanur R, Khemalapure SS, Jeyaseelan SC. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR & UV-Vis), reactive (ELF, LOL, Fukui), drug likeness and molecular docking insights on novel 4-[3-(3-methoxy-phenyl)-3-oxo-propenyl]-benzonitrile by experimental and computational methods. Heliyon 2021; 7:e08429. [PMID: 34877424 PMCID: PMC8632848 DOI: 10.1016/j.heliyon.2021.e08429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
The spectroscopic analysis such as FT-IR, FT-Raman, UV-Vis and NMR are conducted for the synthesized molecule by both experimental and theoretical approach. The theoretical computations were achieved by DFT method with B3LYP functional and 6-311 ++ G (d, P) basis set. Firstly the geometrical parameters obtained by DFT are compared with the related experimental parameters. Experimental FT-IR and FT-Raman spectra of the title molecule have been acquired. The vibrational analysis is conducted and the assignments concerned to the observed bands are mentioned through the potential energy distribution (PED). The GIAO method was employed for theoretical NMR analysis and the results are compared with experimental chemical shifts. In accumulation to these analyses NLO, NBO, FMO and MEP analysis have been conducted to understand the nature of the molecule. ELF and LOL were performed. The drug likeness and molecular docking studies also conducted. The potency of inhibition of molecule against MPRO and PLPRO receptors has been performed using molecular docking studies.
Collapse
Affiliation(s)
- Shivaraj B. Radder
- Department of Physics, M S Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
- Affiliated to Visvesvaraya Technological University, Belgaum, 590018, Karnataka, India
| | - Raveendra Melavanki
- Department of Physics, M S Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
- Affiliated to Visvesvaraya Technological University, Belgaum, 590018, Karnataka, India
| | - Sudhir M. Hiremath
- Department of P.G. Studies in Physics, KLE Society's J.T. College, Gadag, 582101, Karnataka, India
| | - Raviraj. Kusanur
- Department of Chemistry, R.V. College of Engineering, Bangalore, 560059, Karnataka, India
| | - Seema S. Khemalapure
- P.G. Department of Studies and Research in Physics, KLE Society's P.C. Jabin Science College, Hubballi, 580031, Karnataka, India
| | | |
Collapse
|
14
|
Polymorphic donor–acceptor substituted chalcone: structural, spectral, dielectric and nonlinear optical properties for optical limiting applications. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Khamees HA, Revanna BN, Madegowda M, Sebastian J, Haruvegowda DB, Kumar S. Structural, Quantum Chemical and Spectroscopic Investigations on Photophysical Properties of Fluorescent Saccharide Sensor: Theoretical and Experimental Studies. ChemistrySelect 2020. [DOI: 10.1002/slct.202000966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hussien A. Khamees
- Department of Studies in PhysicsManasagangotriUniversity of Mysore Mysuru 570006 Karnataka India
| | - Bhavya N. Revanna
- Department of Studies in PhysicsManasagangotriUniversity of Mysore Mysuru 570006 Karnataka India
| | - Mahendra Madegowda
- Department of Studies in PhysicsManasagangotriUniversity of Mysore Mysuru 570006 Karnataka India
| | - Jeyaseelan Sebastian
- Department of PhysicsSt. Philomena's College (Autonomous) Mysore 570015 Karnataka India
| | - Doreswamy B. Haruvegowda
- Department of Studies in PhysicsSJB Institute of Technology, Kengeri Bengaluru 560060 Karnataka India
| | - Shamantha Kumar
- Department of Studies in PhysicsSJB Institute of Technology, Kengeri Bengaluru 560060 Karnataka India
| |
Collapse
|
16
|
Viji A, Balachandran V, Babiyana S, Narayana B, Saliyan VV. Molecular docking and quantum chemical calculations of 4-methoxy-{2-[3-(4-chlorophenyl)-5-(4-(propane-2-yl) PHENYL)-4, 5-dihydro-1H-pyrazol-1-yl]- 1, 3-thiazol-4-yl}phenol. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Khamees HA, Mohammed YHE, S A, Al-Ostoot FH, Y S, Alghamdi S, Khanum SA, Madegowda M. Effect of o-difluoro and p-methyl substituents on the structure, optical properties and anti-inflammatory activity of phenoxy thiazole acetamide derivatives: Theoretical and experimental studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Khamees HA, Chaluvaiah K, El-khatatneh NA, Swamynayaka A, Chong KH, Dasappa JP, Madegowda M. Crystal structure, DFT calculation, Hirshfeld surface analysis and energy framework study of 6-bromo-2-(4-bromo-phen-yl)imidazo[1,2- a]pyridine. Acta Crystallogr E Crystallogr Commun 2019; 75:1620-1626. [PMID: 31709079 PMCID: PMC6829731 DOI: 10.1107/s2056989019013410] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022]
Abstract
The title imidazo[1,2-a] pyridine derivative, C13H8Br2N2, was synthesized via a single-step reaction method. The title mol-ecule is planar, showing a dihedral angle of 0.62 (17)° between the phenyl and the imidazo[1,2-a] pyridine rings. An intra-molecular C-H⋯N hydrogen bond with an S(5) ring motif is present. In the crystal, a short H⋯H contact links adjacent mol-ecules into inversion-related dimers. The dimers are linked in turn by weak C-H⋯π and slipped π-π stacking inter-actions, forming layers parallel to (110). The layers are connected into a three-dimensional network by short Br⋯H contacts. Two-dimensional fingerprint plots and three-dimensional Hirshfeld surface analysis of the inter-molecular contacts reveal that the most important contributions for the crystal packing are from H⋯Br/Br⋯H (26.1%), H⋯H (21.7%), H⋯C/C⋯H (21.3%) and C⋯C (6.5%) inter-actions. Energy framework calculations suggest that the contacts formed between mol-ecules are largely dispersive in nature. Analysis of HOMO-LUMO energies from a DFT calculation reveals the pure π character of the aromatic rings with the highest electron density on the phenyl ring, and σ character of the electron density on the Br atoms. The HOMO-LUMO gap was found to be 4.343 eV.
Collapse
Affiliation(s)
- Hussien Ahmed Khamees
- Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Kumara Chaluvaiah
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangaluru 574 199, Karnataka, India
| | - Nasseem Ahmed El-khatatneh
- Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Ananda Swamynayaka
- Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Kwong Huey Chong
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Jagadeesh Prasad Dasappa
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangaluru 574 199, Karnataka, India
| | - Mahendra Madegowda
- Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru 570 006, Karnataka, India
| |
Collapse
|
19
|
Khamees HA, Mohammed YHE, Swamynayaka A, Al‐Ostoot FH, Sert Y, Alghamdi S, Khanum SA, Madegowda M. Molecular Structure, DFT, Vibrational Spectra with Fluorescence Effect, Hirshfeld Surface, Docking Simulation and Antioxidant Activity of Thiazole Derivative. ChemistrySelect 2019. [DOI: 10.1002/slct.201900646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hussien A. Khamees
- Department of Studies in PhysicsManasagangotriUniversity of Mysore Mysuru-570006, Karnataka India
| | - Yasser H. E. Mohammed
- Department of ChemistryYuvaraja's CollegeUniversity of Mysore Mysuru- 570005 Karnataka India
- Department of BiochemistryFaculty of Applied Science CollegeUniversity of Hajjah Yemen
| | - Ananda Swamynayaka
- Department of Studies in PhysicsManasagangotriUniversity of Mysore Mysuru-570006, Karnataka India
| | - Fares H. Al‐Ostoot
- Department of ChemistryYuvaraja's CollegeUniversity of Mysore Mysuru- 570005 Karnataka India
- Department of BiochemistryFaculty of Education & ScienceUniversity of Albaydaa Yemen
| | - Yusuf Sert
- Sorgun Vocational SchoolBozok University 66100, Yozgat Turkey
| | - Saad Alghamdi
- Laboratory Medicine Departmentfaculty of Applied Medical ScienceUmm Al-Qura University, Makkah Saudi Arabia
| | - Shaukath A. Khanum
- Department of ChemistryYuvaraja's CollegeUniversity of Mysore Mysuru- 570005 Karnataka India
| | - Mahendra Madegowda
- Department of Studies in PhysicsManasagangotriUniversity of Mysore Mysuru-570006, Karnataka India
| |
Collapse
|