1
|
Desenko SM, Gorobets MY, Lipson VV, Sakhno YI, Chebanov VA. Dihydroazolopyrimidines: Past, Present and Perspectives in Synthesis, Green Chemistry and Drug Discovery. CHEM REC 2024; 24:e202300244. [PMID: 37668291 DOI: 10.1002/tcr.202300244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Dihydroazolopyrimidines are an important class of heterocycles that are isosteric to natural purines and are therefore of great interest primarily as drug-like molecules. In contrast to the heteroaromatic analogs, synthetic approaches to these compounds were developed much later, and their chemical properties and biological activity have not been studied in detail until recently. In the review, different ways to build dihydroazolopyrimidine systems from different building blocks are described - via the initial formation of a partially hydrogenated pyrimidine ring or an azole ring, as well as a one-pot assembly of azole and azine fragments. Special attention is given to modern approaches: multicomponent reactions, green chemistry, and the use of non-classical activation methods. Information on the chemical properties of dihydroazolopyrimidines and the prospects for their use in the design of drugs of various profiles are also summarized in this review.
Collapse
Affiliation(s)
- Serhiy M Desenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Mykola Yu Gorobets
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Victoria V Lipson
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
- Department of Medicinal Chemistry, State Institution "V. Ya. Danilevsky Institute for Endocrine Pathology Problems" NAMS of Ukraine, Alchevskikh St. 10, Kharkiv, Ukraine, 61002
| | - Yana I Sakhno
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Valentyn A Chebanov
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
| |
Collapse
|
2
|
Rahro PN, Shirini F, Gilani AG. Facile synthesis of triazolo/benzazolo[2,1- b]quinazolinone derivatives catalyzed by a new deep eutectic mixture based on glucose, pregabalin and urea. RSC Adv 2023; 13:31470-31479. [PMID: 37901261 PMCID: PMC10603617 DOI: 10.1039/d3ra05199d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
In this study, a novel natural deep eutectic solvent was prepared from glucose, pregabalin, and urea. The prepared solvent was identified using a variety of techniques, including Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential thermal analysis (DTA), and refractive index measurements (RI). The prepared deep eutectic solvent was then utilized for the one-pot synthesis of quinazolinone derivatives. The yields of the product obtained with and without the catalyst were determined, providing insights into the catalytic efficiency of the system. This protocol offers several advantages, including mild reaction conditions, easy reagent preparation, a green process, short reaction times (2-60 min), high yields (80-99%), and a straightforward procedure with the possibility of catalyst reusability.
Collapse
Affiliation(s)
- Parissa Naddaf Rahro
- Department of Chemistry, College of Sciences, University of Guilan Rasht 41335-19141 Iran +98 131 3233262 +981313233262
| | - Farhad Shirini
- Department of Chemistry, College of Sciences, University of Guilan Rasht 41335-19141 Iran +98 131 3233262 +981313233262
| | - Ali Ghanadzadeh Gilani
- Department of Chemistry, College of Sciences, University of Guilan Rasht 41335-19141 Iran +98 131 3233262 +981313233262
| |
Collapse
|
3
|
Nazari S, Zabihzadeh M, Shirini F, Tajik H. A Dicationic Molten Salt Catalyzed Synthesis of 1,2,4-Triazolopyrimidine, Quinazolinone and Biscoumarin Derivatives under Green Conditions. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shadi Nazari
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | - Mehdi Zabihzadeh
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | - Farhad Shirini
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | - Hassan Tajik
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
4
|
Valiey E, Dekamin MG. Pyromellitic diamide-diacid bridged mesoporous organosilica nanospheres with controllable morphologies: a novel PMO for the facile and expeditious synthesis of imidazole derivatives. NANOSCALE ADVANCES 2021; 4:294-308. [PMID: 36132961 PMCID: PMC9418939 DOI: 10.1039/d1na00738f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 05/08/2023]
Abstract
In this work, novel pyromellitic diamide-diacid bridged mesoporous organosilica (PMAMOS) nanospheres with controllable morphologies and Brønsted acid catalytic centers were designed and prepared through a convenient method by altering the addition sequence of precursors, solvent, and aging time. The obtained PMAMOSs demonstrate high surface areas and uniform pore sizes. FESEM, HRTEM, BET, EDX, XRD, FTIR and TGA analyses were performed to characterize and examine the effective factors for the preparation of PMAMOS nanospheres. Due to the appropriate physicochemical properties including Brønsted acid centers, suitable surface area and thermal stability of the PMAMOS nanosphere material, it was explored in the three-component reaction of benzyl or benzoin, ammonium acetate, and different aldehyde derivatives as a case study of multicomponent reactions. Corresponding imidazole derivatives were obtained in EtOH under reflux conditions in high to quantitative yields and short reaction times. It was also shown that the heterogeneous solid acid can be reused at least five times with negligible loss of its catalytic activity, indicating the appropriate stability and high activity of the newly introduced mesoporous organosilica.
Collapse
Affiliation(s)
- Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Iran
| |
Collapse
|
5
|
Pourhasan Kisomi R, Shirini F, Golshekan M. Fe
3
O
4
@MCM‐41@ZrCl
2
: A novel magnetic mesoporous nanocomposite catalyst including zirconium nanoparticles for the synthesis of 1‐(benzothiazolylamino)phenylmethyl‐2‐naphthols. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Farhad Shirini
- Department of Chemistry, College of Sciences University of Guilan Rasht Iran
| | - Mostafa Golshekan
- Medical Biotechnology Research center, School of Paramedicine Guilan University of Medical Sciences Rasht Iran
| |
Collapse
|
6
|
Pourhasan-Kisomi R, Shirini F, Golshekan M. Synthetic Applications of a New Magnetic Mesoporous Nanocomposite Catalyst Fe3O4@MCM-41@NH-SO3H. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2020.1870398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Farhad Shirini
- Department of Chemistry, College of Sciences, University of Guilan, Rasht, Iran
| | - Mostafa Golshekan
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Imtiaz S, Ahmad War J, Banoo S, Khan S. α-Aminoazoles/azines: key reaction partners for multicomponent reactions. RSC Adv 2021; 11:11083-11165. [PMID: 35423648 PMCID: PMC8695948 DOI: 10.1039/d1ra00392e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
Aromatic α-aminoazaheterocycles are the focus of significant investigations and exploration by researchers owing to their key role in diverse biological and physiological processes. The existence of their derivatives in numerous drugs and alkaloids is due to their heterocyclic nitrogenous nature. Therefore, the synthesis of a structurally diverse range of their derivatives through simple and convenient methods represents a vital field of synthetic organic chemistry. Multicomponent reactions (MCRs) provide a platform to introduce desirable structure diversity and complexity into a molecule in a single operation with a significant reduction in the use of harmful organic waste, and hence have attracted particular attention as an excellent tool to access these derivatives. This review covers the advances made from 2010 to the beginning of 2020 in terms of the utilization of α-aminoazaheterocycles as synthetic precursors in MCRs.
Collapse
Affiliation(s)
- Shah Imtiaz
- Department of Chemistry, Aligarh Muslim University Aligarh India-202002
| | - Jahangir Ahmad War
- Department of Chemistry, National Institute of Technology Kashmir India-190006
| | - Syqa Banoo
- Department of Chemistry, Mangalayatan University Beswan Aligarh India-202146
| | - Sarfaraz Khan
- Department of Chemistry, Aligarh Muslim University Aligarh India-202002
| |
Collapse
|
8
|
Agar-entrapped sulfonated DABCO: Agelly acidic catalyst for the acceleration of one-pot synthesis of 1,2,4-triazoloquinazolinone and some pyrimidine derivatives. J Mol Struct 2021; 1226:129336. [PMID: 33012844 PMCID: PMC7518970 DOI: 10.1016/j.molstruc.2020.129336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 11/26/2022]
Abstract
In this project, a recently synthesized DABCO-based catalyst is entrapped in agar to reduce its moisture sensitivity leading to enhancement of its stability and catalytic activity. After preparation and identification this new reagent is used as an efficient and environmentally safe catalyst for the preparation of 1, 2, 4-triazoloquinazolinone and some pyrimidine derivatives. This method is accompanied with some superiorities such as, simple operation, mild and green conditions, use of low cost and non-hazardous natural material, short reaction times, easy preparation methods and simple work-up procedures. The prepared catalyst can be re-used for several times in all of the studied reactions without any appreciable loss in its activity.
Collapse
|
9
|
Kerru N, Gummidi L, Maddila S, Jonnalagadda SB. A Review of Recent Advances in the Green Synthesis of Azole- and Pyran-based Fused Heterocycles Using MCRs and Sustainable Catalysts. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201020204620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrogen, oxygen and sulfur-containing fused heterocycles are of great importance
because of their exciting and diverse biological activities. The construction of the carbonnitrogen
and carbon-oxygen through a multicomponent reaction approach by using ecofriendly
reusable heterogeneous catalysts are of significant importance as it opens avenues for
the introduction of nitrogen and oxygen in organic molecules. Thus, green methodologies
have gained particular significance in this field; today, green chemistry is considered a tool
for introducing sustainable concepts at the fundamental level. This review emphasizes and
discusses the current progress on the applications of eco-friendly, recyclable heterogeneous
catalysts for the synthesis of different heterocyclic fused systems and their green protocols.
We paid particular attention to the specific integration of carbon-nitrogen, and carbon-oxygen
bond-forming fused heterocycles by a one-pot approach by evaluating the literature between 2012 and the middle of
2020. The efficiency of the catalyst is assessed in terms of reaction time, yield and possible reusability. The MCR and
heterogeneous catalyst strategies have demonstrated broader scope, economical and viability for the green and sustainable
processes in the field of synthetic organic chemistry.
Collapse
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban-4000, South Africa
| | - Lalitha Gummidi
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban-4000,, South Africa
| | - Suresh Maddila
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban-4000,, South Africa
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban-4000,, South Africa
| |
Collapse
|
10
|
Ramadan SK, Elrazaz EZ, Abouzid KAM, El-Naggar AM. Design, synthesis and in silico studies of new quinazolinone derivatives as antitumor PARP-1 inhibitors. RSC Adv 2020; 10:29475-29492. [PMID: 35521104 PMCID: PMC9055986 DOI: 10.1039/d0ra05943a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Herein, we report an eco-friendly synthesis of a new series of quinazolinone-based derivatives as potential PARP-1 inhibitors. The 4-quinazolinone scaffold was utilized as a bioisostere to the phthalazinone core of the reference compound Olaparib. Most of the synthesized compounds displayed appreciable inhibitory activity against PARP-1. Compound 12c showed inhibitory activity at IC50 = 30.38 nM comparable to Olaparib, which has IC50 = 27.89 nM. Cell cycle analysis was performed for compounds 12a and 12c, and both exhibited cell growth arrest at G2/M phase in the MCF-7 cell line. In addition, both compounds increased the programmed apoptosis compared to the control. Furthermore, molecular docking of the final compounds into the PARP-1 active site was executed to explore their probable binding modes. Also, a computational QSAR and in silico ADMET study was performed. The results of this study revealed that some of the newly synthesized compounds could serve as a new framework to discover new PARP-1 inhibitors with anti-cancer activity.
Collapse
Affiliation(s)
- Sayed K Ramadan
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Eman Z Elrazaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Khaled A M Abouzid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University Abbassia 11566 Cairo Egypt
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City Sadat City Egypt
| | - Abeer M El-Naggar
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| |
Collapse
|
11
|
Akbari A, Dekamin MG, Yaghoubi A, Naimi-Jamal MR. Novel magnetic propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO 3H) as a highly efficient and reusable nanoreactor for the sustainable synthesis of imidazopyrimidine derivatives. Sci Rep 2020; 10:10646. [PMID: 32606381 PMCID: PMC7327082 DOI: 10.1038/s41598-020-67592-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022] Open
Abstract
In this study, preparation and characterization of a new magnetic propylsulfonic acid-anchored isocyanurate bridging periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO3H) is described. The iron oxide@PMO-ICS-PrSO3H nanomaterials were characterized by Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and field emission scanning electron microscopy as well as thermogravimetric analysis, N2 adsorption-desorption isotherms and vibrating sample magnetometer techniques. Indeed, the new obtained materials are the first example of the magnetic thermally stable isocyanurate-based mesoporous organosilica solid acid. Furthermore, the catalytic activity of the Iron oxide@PMO-ICS-PrSO3H nanomaterials, as a novel and highly efficient recoverable nanoreactor, was investigated for the sustainable heteroannulation synthesis of imidazopyrimidine derivatives through the Traube-Schwarz multicomponent reaction of 2-aminobenzoimidazole, C‒H acids and diverse aromatic aldehydes. The advantages of this green protocol are low catalyst loading, high to quantitative yields, short reaction times and the catalyst recyclability for at least four consecutive runs.
Collapse
Affiliation(s)
- Arezoo Akbari
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran.
| | - Amene Yaghoubi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| |
Collapse
|
12
|
Bi
2
O
3
/FAp, a sustainable catalyst for synthesis of dihydro‐[1,2,4]triazolo[1,5‐a]pyrimidine derivatives through green strategy. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Tan J, Wang L, Hu YL. Multifunctional Periodic Mesoporous Organosilica Supported Benzotriazolium Ionic Liquid as an Efficient Nanocatalyst for Synergistic Transformation of CO
2
to Cyclic Carbonates. ChemistrySelect 2020. [DOI: 10.1002/slct.202000813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jin Tan
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| | - Long Wang
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| | - Yu Lin Hu
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| |
Collapse
|
14
|
Zabihzadeh M, Shirini F, Tajik H, Daneshvar N. [H-Pyrr][HSO4] as an Efficient Ionic Liquid Catalyst for the Synthesis of Xanthenes, Tetraketones, and Triazolo[2,1-b]quinazolinones. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2019.1708419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Mehdi Zabihzadeh
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | - Farhad Shirini
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | - Hassan Tajik
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | - Nader Daneshvar
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
15
|
Karimi-Chayjani R, Daneshvar N, Nikoo Langarudi MS, Shirini F, Tajik H. Silica-coated magnetic nanoparticles containing bis dicationic bridge for the synthesis of 1,2,4-triazolo pyrimidine/ quinazolinone derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126891] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Haghighat M, Golshekan M, Shirini F. Periodic Mesoporous Organosilica Containing Bridged
N
‐Sulfonic Acid Groups: Promotion of the Synthesis of
N,N’‐
Diarylformamidines, Benzoxazoles, Benzothiazoles and Benzimidazoles. ChemistrySelect 2019. [DOI: 10.1002/slct.201900885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahdieh Haghighat
- Department of ChemistryCollege of ScienceUniversity of Guilan, Rasht 41335-19141 Iran
| | - Mostafa Golshekan
- Medical Biotechnology Research centerSchool of ParamedicineGuilan University of Medical Sciences, Rasht Iran
| | - Farhad Shirini
- Department of ChemistryCollege of ScienceUniversity of Guilan, Rasht 41335-19141 Iran
| |
Collapse
|
17
|
New magnetic nanocatalyst containing a bis-dicationic ionic liquid framework for Knoevenagel condensation reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03747-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Karimi-Chayjani R, Daneshvar N, Tajik H, Shirini F. Introduction of a New Magnetic Nanocatalyst as an Organic-inorganic Hybrid Framework for the Synthesis of Pyrano[2,3-d]pyrimidinone(thione)s and Pyrido[2,3-d]pyrimidines. ChemistrySelect 2019. [DOI: 10.1002/slct.201802916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Nader Daneshvar
- Department of Chemistry; College of Sciences; University of Guilan; University Campus 2
| | - Hassan Tajik
- Department of Chemistry; College of Sciences; University of Guilan; University Campus 2
- Department of Chemistry, College of Sciences; University of Guilan; Rasht 41335-19141 Iran
| | - Farhad Shirini
- Department of Chemistry; College of Sciences; University of Guilan; University Campus 2
- Department of Chemistry, College of Sciences; University of Guilan; Rasht 41335-19141 Iran
| |
Collapse
|
19
|
Pourghasemi-Lati M, Shirini F, Alinia-Asli M, Rezvani M. Butane-1-sulfonic acid immobilized on magnetic Fe3O4@SiO2nanoparticles: A novel and heterogeneous catalyst for the one-pot synthesis of barbituric acid and pyrano[2,3-d] pyrimidine derivatives in aqueous media. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. Pourghasemi-Lati
- University of Zanjan; Department of Chemistry, College of Science; Zanjan 45195-313 Iran
| | - F. Shirini
- University of Guilan; Department of Chemistry, College of Science; Rasht 41335 Iran
| | - M. Alinia-Asli
- University of Zanjan; Department of Chemistry, College of Science; Zanjan 45195-313 Iran
| | - M.A. Rezvani
- University of Zanjan; Department of Chemistry, College of Science; Zanjan 45195-313 Iran
| |
Collapse
|