1
|
Jaiswal S, Verma K, Srivastva A, Arya N, Dwivedi J, Sharma S. Green Synthetic and Pharmacological Developments in the Hybrid Quinazolinone Moiety: An Updated Review. Curr Top Med Chem 2025; 25:493-532. [PMID: 39162270 DOI: 10.2174/0115680266313354240807051401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
Bicyclic quinazolinone constitutes an important class of organic framework enveloping numerous biological properties which enthused organic and medicinal chemists to explore green synthetic strategies for the construction of quinazolinone hybrids with significantly improved pharmacodynamics and pharmacokinetic profiles. In this perspective, the present review summarizes the most recent green synthetic strategies, biological properties, structure-activity relationship, and molecular docking studies of the 4-quinazolinone-based scaffold. This review provides deeper insight into the hit-to-lead synthesis of quinazolinone derivatives in the development of clinically important therapeutic candidates.
Collapse
Affiliation(s)
- Shivangi Jaiswal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Anamika Srivastva
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Nikilesh Arya
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
2
|
Emami L, Hassani M, Mardaneh P, Zare F, Saeedi M, Emami M, Khabnadideh S, Sadeghian S. 6-Bromo quinazoline derivatives as cytotoxic agents: design, synthesis, molecular docking and MD simulation. BMC Chem 2024; 18:125. [PMID: 38965630 PMCID: PMC11225515 DOI: 10.1186/s13065-024-01230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Based on unselectively, several side effects and drug resistance of available anticancer agents, the development and research for novel anticancer agents is necessary. In this study, a new series of quinazoline-4(3H)-one derivatives having a thiol group at position 2 of the quinazoline ring (8a-8 h) were designed and synthesized as potential anticancer agents. The Chemical structures of all compounds were characterized by 1H-NMR, 13C-NMR, and Mass spectroscopy. The antiproliferative activity of all derivatives were determined against two cancer cell lines (MCF-7 and SW480) and one normal cell lines (MRC-5) by the MTT method. Cisplatin, Erlotinib and Doxorubicin were used as positive controls. The results of in vitro screening showed that 8a with an aliphatic linker to SH group was the most potent compound with IC50 values of 15.85 ± 3.32 and 17.85 ± 0.92 µM against MCF-7 and SW480 cell lines, respectively. 8a indicated significantly better potency compared to Erlotinib in the MCF-7 cell line. The cytotoxic results obtained from testing compound 8a on the normal cell line, revealing an IC50 value of 84.20 ± 1.72 µM, provide compelling evidence of its selectivity in distinguishing between tumorigenic and non-tumorigenic cell lines. Structure-activity relationship indicated that the variation in the anticancer activities of quinazoline-4(3H)-one derivatives was affected by different substitutions on the SH position. Molecular docking and MD simulation were carried out for consideration of the binding affinity of compounds against EGFR and EGFR-mutated. The binding energy of compounds 8a and 8c were calculated at -6.7 and - 5.3 kcal.mol- 1, respectively. Compounds 8a and 8c were found to establish hydrogen bonds and some other important interactions with key residue. The DFT analysis was also performed at the B3LYP/6-31 + G(d, p) level for compounds 8a, 8c and Erlotinib. Compound 8a was thermodynamically more stable than 8c. Also, the calculated theoretical and experimental data for the IR spectrum were in agreement. The obtained results delineated that the 8a can be considered an appropriate pharmacophore to develop as an anti-proliferative agent.
Collapse
Affiliation(s)
- Leila Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mardaneh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Saeedi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Khabnadideh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sara Sadeghian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Hekal HA, Hammad OM, El-Brollosy NR, Salem MM, Allayeh AK. Design, synthesis, docking, and antiviral evaluation of some novel pyrimidinone-based α-aminophosphonates as potent H1N1 and HCoV-229E inhibitors. Bioorg Chem 2024; 147:107353. [PMID: 38615475 DOI: 10.1016/j.bioorg.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Dialkyl/aryl aminophosphonates, 3a-g and 4a-e were synthesized using the LiClO4 catalyzed Kabachnic Fields-type reaction straightforwardly and efficiently. The synthesized phosphonates structures were characterized using elemental analyses, FT-IR, 1H NMR, 13C NMR, and MS spectroscopy. The new compounds were subjected to in-silico molecular docking simulations to evaluate their potential inhibition against Influenza A Neuraminidase and RNA-dependent RNA polymerase of human coronavirus 229E. Subsequently, the compounds were further tested in vitro using a cytopathic inhibition assay to assess their antiviral activity against both human Influenza (H1N1) and human coronavirus (HCoV-229E). Diphenyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (furan-2-yl) methyl) phosphonate (3f) and diethyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) methyl) phosphonate (4e) were demonstrated direct inhibition activity against Influenza A Neuraminidase and RNA-dependent RNA polymerase. This was supported by their highly favorable binding energies in-silico, with top-ranked values of -12.5 kcal/mol and -14.2 kcal/mol for compound (3f), and -13.5 kcal/mol and -9.89 kcal/mol for compound (4e). Moreover, they also displayed notable antiviral efficacy in vitro against both viruses. These compounds demonstrated significant antiviral activity, as evidenced by selectivity indices (SI) of 101.7 and 51.8, respectively against H1N1, and 24.5 and 5.1 against HCoV-229E, respectively.
Collapse
Affiliation(s)
- Hend A Hekal
- Chemistry Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | - Omar M Hammad
- Chemistry Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | | | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Abdou K Allayeh
- Virology Lab 176, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, 12622-Dokki, Cairo, Egypt
| |
Collapse
|
4
|
Guerfi M, Berredjem M, Dekir A, Bahadi R, Djouad SE, Sothea TO, Redjemia R, Belhani B, Boussaker M. Anticancer activity, DFT study, ADMET prediction, and molecular docking of novel α-sulfamidophosphonates. Mol Divers 2024; 28:1023-1038. [PMID: 37010709 DOI: 10.1007/s11030-023-10630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
A series of novel α-sulfamidophosphonate derivatives (3a-3 g) were synthesized and evaluated for anticancer activity against different human cancer cell lines (PRI, K562, and JURKAT). The antitumor activity of all compounds using the MTT test remains moderate compared to the standard drug chlorambucil. Compounds 3c and 3 g were found to be more active anticancer agent against PRI and K562 cells with IC50 value 0.056-0.097 and 0.182-0.133 mM, respectively. Molecular docking study related to binding affinity and binding mode analysis showed that synthesized compounds had potential to inhibit glutamate carboxypeptidase II (GCPII). Furthermore, computational analysis was performed through Density Functional Theory (DFT) utilizing the B3LYP 6-31 G (d, p) basis set and the theoretical results were correlated with experimental data. The ADME/toxicity analyses carried out by Swiss ADME and OSIRIS software show that all synthesized molecules exhibited good pharmacokinetics, bioavailability, and had no toxicity profile.
Collapse
Affiliation(s)
- Meriem Guerfi
- Chemistry Department, Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Sciences Faculty, Badji-Mokhtar Annaba University, Box 12, 23000, Annaba, Algeria
| | - Malika Berredjem
- Chemistry Department, Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Sciences Faculty, Badji-Mokhtar Annaba University, Box 12, 23000, Annaba, Algeria.
| | - Ali Dekir
- Chemistry Department, Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Sciences Faculty, Badji-Mokhtar Annaba University, Box 12, 23000, Annaba, Algeria
| | - Rania Bahadi
- Chemistry Department, Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Sciences Faculty, Badji-Mokhtar Annaba University, Box 12, 23000, Annaba, Algeria
| | - Seif-Eddine Djouad
- Chemistry Department, Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Sciences Faculty, Badji-Mokhtar Annaba University, Box 12, 23000, Annaba, Algeria
- Laboratory of Therapeutic Chemistry of Hospitalo-University Center Benflis Touhami, Batna, Algeria
| | - Tan Ouk Sothea
- Laboratoire Peirene, EA7500 Université de Limoges, 123 Avenue Albert Thomas, 87000, Limoges Cedex, France
| | - Rayenne Redjemia
- Chemistry Department, Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Sciences Faculty, Badji-Mokhtar Annaba University, Box 12, 23000, Annaba, Algeria
| | - Billel Belhani
- Chemistry Department, Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Sciences Faculty, Badji-Mokhtar Annaba University, Box 12, 23000, Annaba, Algeria
| | - Meriem Boussaker
- Chemistry Department, Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Sciences Faculty, Badji-Mokhtar Annaba University, Box 12, 23000, Annaba, Algeria
| |
Collapse
|
5
|
Aziz YMA, Nafie MS, Hanna PA, Ramadan S, Barakat A, Elewa M. Synthesis, Docking, and DFT Studies on Novel Schiff Base Sulfonamide Analogues as Selective COX-1 Inhibitors with Anti-Platelet Aggregation Activity. Pharmaceuticals (Basel) 2024; 17:710. [PMID: 38931377 PMCID: PMC11206759 DOI: 10.3390/ph17060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Selective COX-1 inhibitors are preferential therapeutic targets for platelet aggregation and clotting responses. In this study, we examined the selective COX-1-inhibitory activities of four newly synthesized compounds, 10-13, along with their abilities to inhibit platelet aggregation against ADP and collagen. The target compounds 10-13 were synthesized using the conventional method, sonication, and microwave-assisted methods. Microanalytical and spectral data were utilized to elucidate the structures of the new compounds 10-13. Additionally, a spectral NMR experiment [NOESY] was conducted to emphasize the configuration around the double bond of the imine group C=N. The obtained results revealed no observed correlation between any of the neighboring protons, suggesting that the configuration at the C=N double bond is E. Biological results revealed that all the screened compounds 10-13 might serve as selective COX-1 inhibitors. They showed IC50 values ranging from 0.71 μM to 4.82 μM against COX-1 and IC50 values ranging from 9.26 μM to 15.24 μM against COX-2. Their COX-1 selectivity indices ranged between 2.87 and 18.69. These compounds show promise as promising anti-platelet aggregation agents. They effectively prevented platelet aggregation induced by ADP with IC50 values ranging from 0.11 μM to 0.37 μM, surpassing the standard aspirin with an IC50 value of 0.49 μM. Additionally, they inhibited the platelet aggregation induced by collagen with IC50 values ranging from 0.12 μM to 1.03 μM, demonstrating superior efficacy compared to aspirin, which has an IC50 value of 0.51 μM. In silico molecular modeling was performed for all the target compounds within the active sites of COX-1 and COX-2 to rationalize their selective inhibitory activities towards COX-1. It was found that the binding interactions of the designed compounds within the COX-1 active site had remained unaffected by the presence of celecoxib. Molecular modeling and DFT calculations using the B3LYP/6-31+G (d,p) level were performed to study the stability of E-forms with respect to Z-forms for the investigated compounds. A strong correlation was observed between the experimental observations and the quantum chemical descriptors.
Collapse
Affiliation(s)
- Yasmine M. Abdel Aziz
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed S. Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Pierre A. Hanna
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sherif Ramadan
- Chemistry Department, Michigan State University, East Lansing, MI 48824, USA;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Marwa Elewa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
6
|
Gavadia R, Rasgania J, Sahu N, Nimesh S, Loveleen L, Mor S, Jakhar K. Synthesis of Indole-Linked Thiadiazoles and their Anticancer Action against Triple-Negative Breast Cancer. Chem Biodivers 2024; 21:e202302000. [PMID: 38427723 DOI: 10.1002/cbdv.202302000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
With a lack of targeted therapy and significantly high metastasis, heterogeneity, and relapse rates, Triple-Negative Breast Cancer (TNBC) offers substantial treatment challenges and demands more chemotherapeutic interventions. In the present study, indole-endowed thiadiazole derivatives have been synthesized and screened for antiproliferative potency against the triple-negative breast cancer MDA-MB-231 cell line. Compound 4 h, possessing chlorophenyl moiety, displays the best anticancer potency (IC50: 0.43 μM) in the cell viability assay. The title compounds demonstrate substantial docking competency against the EGFR receptor (PDB ID: 3POZ), validating their in-vitro ant proliferative action. With a high docking score (-9.9 to -8.7 kcal/mol), the indole hybrids display significant binding propensity comparable to the co-crystallized ligand TAK-285 and occupy a similar strategic position in the active domain of the designated receptor. The quantum and electronic properties of the integrated templates are evaluated through DFT, and optimal values of the deduced global reactivity indices, such as energy gap, electronegativity, ionization potential, chemical potential, electrophilicity, etc., suggest their apt biochemical reactivity. The indole hybrids show near-appropriate pharmacokinetic efficacy and bioavailability in the in-silico studies, indicating their candidacy for potential drug usage. Promising in-vitro anticancer action and binding interfaces project indole conjugates as potential leads in addressing the TNBC dilemma.
Collapse
Affiliation(s)
- Renu Gavadia
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Jyoti Rasgania
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Neetu Sahu
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Lacy Loveleen
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Komal Jakhar
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| |
Collapse
|
7
|
Mohapatra RK, Azam M, Mohapatra PK, Sarangi AK, Abdalla M, Perekhoda L, Yadav O, Al-Resayes SI, Jong-Doo K, Dhama K, Ansari A, Seidel V, Verma S, Raval MK. Computational studies on potential new anti-Covid-19 agents with a multi-target mode of action. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2022; 34:102086. [PMID: 35582633 PMCID: PMC9101701 DOI: 10.1016/j.jksus.2022.102086] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 05/28/2023]
Abstract
A compound that could inhibit multiple targets associated with SARS-CoV-2 infection would prove to be a drug of choice against the virus. Human receptor-ACE2, receptor binding domain (RBD) of SARS-CoV-2 S-protein, Papain-like protein of SARS-CoV-2 (PLpro), reverse transcriptase of SARS-CoV-2 (RdRp) were chosen for in silico study. A set of previously synthesized compounds (1-5) were docked into the active sites of the targets. Based on the docking score, ligand efficiency, binding free energy, and dissociation constants for a definite conformational position of the ligand, inhibitory potentials of the compounds were measured. The stability of the protein-ligand (P-L) complex was validated in silico by using molecular dynamics simulations using the YASARA suit. Moreover, the pharmacokinetic properties, FMO and NBO analysis were performed for ranking the potentiality of the compounds as drug. The geometry optimizations and electronic structures were investigated using DFT. As per the study, compound-5 has the best binding affinity against all four targets. Moreover, compounds 1, 3 and 5 are less toxic and can be considered for oral consumption.
Collapse
Affiliation(s)
- Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha 758002, India
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh 11451, Saudi Arabia
| | - Pranab K Mohapatra
- Department of Chemistry, C. V. Raman Global University, Bidyanagar, Mahura, Janla, Bhubaneswar, Odisha 752054, India
| | - Ashish K Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province 250012, PR China
| | - Lina Perekhoda
- Department of Medicinal Chemistry, National University of Pharmacy, Pushkinska Str. 53, Kharkiv 61002, Ukraine
| | - Oval Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Saud I Al-Resayes
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh 11451, Saudi Arabia
| | - Kim Jong-Doo
- Buddhist Culture College, Dongguk University, Gyeongju-si, Gyeongsangbuk-do 780-714, South Korea
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Sarika Verma
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute, Bhopal, MP 462026, India
- Academy of Council Scientific and Industrial Research - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, M.P 462026, India
| | - Mukesh K Raval
- Department of Chemistry, G. M. University, Sambalpur, Odisha, India
| |
Collapse
|
8
|
Kaboudin B, Daliri P, Faghih S, Esfandiari H. Hydroxy- and Amino-Phosphonates and -Bisphosphonates: Synthetic Methods and Their Biological Applications. Front Chem 2022; 10:890696. [PMID: 35721002 PMCID: PMC9200139 DOI: 10.3389/fchem.2022.890696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Phosphonates and bisphosphonates are stable analogs of phosphates and pyrophosphates that are characterized by one and two carbon–phosphorus bonds, respectively. Among the various phosphonates and bisphosphonates, hydroxy and amino substitutes are of interest as effective in medicinal and industrial chemistry. For example, hydroxy bisphosphonates have proven to be effective for the prevention of bone loss, especially in osteoporotic disease. On the other hand, different substitutions on the carbon atom connected to phosphorus have led to the synthesis of many different hydroxy- and amino-phosphonates and -bisphosphonates, each with its distinct physical, chemical, biological, therapeutic, and toxicological characteristics. Dialkyl or aryl esters of phosphonate and bisphosphonate compounds undergo the hydrolysis process readily and gave valuable materials with wide applications in pharmaceutical and agriculture. This review aims to demonstrate the ongoing preparation of various classes of hydroxy- and amino-phosphonates and -bisphosphonates. Furthermore, the current review summarizes and comprehensively describes articles on the biological applications of hydroxyl- and amino-phosphonates and -bisphosphonates from 2015 until today.
Collapse
|
9
|
Ganga M, Kalaivanan C, Sankaran KR. Synthesis, SC-XRD, DFT Investigation and Hirshfeld Surface Analysis of 1-Neopentyl-2,4,5-Triphenyl-1H-Imidazole Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2038217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. Ganga
- Department of Chemistry, Annamalai University, Chidambaram, Tamil Nadu, India
| | - C. Kalaivanan
- Department of Chemistry, K. Ramakrishnan College of Technology, Tiruchirapalli, Tamil Nadu, India
| | - K. R. Sankaran
- Department of Chemistry, Annamalai University, Chidambaram, Tamil Nadu, India
| |
Collapse
|
10
|
Elbadawi MM, Khodair AI, Awad MK, Kassab SE, Elsaady MT, Abdellatif KR. Design, synthesis and biological evaluation of novel thiohydantoin derivatives as antiproliferative agents: A combined experimental and theoretical assessments. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Zhang R, Ma R, Fu Q, Chen R, Wang Z, Wang L, Ma Y. Selective electrophilic di- and mono-fluorinations for the synthesis of 4-difluoromethyl and 4-fluoromethyl quinazolin(thi)ones by Selectfluor-triggered multi-component reaction. Org Chem Front 2022. [DOI: 10.1039/d1qo01728d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient domino protocol for the selective synthesis of 4-difluoromethyl and 4-fluoromethyl quinazolin(thi)ones was established from readily available 2-aminoacetophenones and iso(thio)cyanates mediated by Selectfluor. The reaction outcomes are...
Collapse
|
12
|
Shaikh S, Yellapurkar I, Ramana MMV. Ultrasound assisted one-pot synthesis of novel antipyrine based α-aminophosphonates using TiO2/carbon nanotubes nanocomposite as a heterogeneous catalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02110-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Alizadeh A, Bagherinejad A, Khanpour M. Molecular Iodine-Mediated Synthesis of 2-Azaanthraquinones from [3.3.3]Propellanes via a Metal-Free Rearrangement. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractA novel iodine-mediated rearrangement of heterocyclic [3.3.3]propellanes under green conditions is described. This metal-free transformation for the straightforward synthesis of substituted 2-azaanthraquinones proceeds via ring opening/dissociation of C–O and C–N bonds/intramolecular C(sp3)–C(sp3) bond formation/ring expansion/aza-ring closure/1,3-N to N alkyl migration. High atom-efficiency, synthetically useful yields, easily accessible starting materials, and mild reaction conditions are advantages of this process.
Collapse
Affiliation(s)
| | | | - Mojtaba Khanpour
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
| |
Collapse
|
14
|
Abdelwahed RE, Radhi AH, Awad HM, El Gokha AA, Goda AES, El Sayed IET. Synthesis and Anti-Proliferative Activity of New α-Amino Phosphonate Derivatives Bearing Heterocyclic Moiety. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02404-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Varga PR, Keglevich G. Synthesis of α-Aminophosphonates and Related Derivatives; the Last Decade of the Kabachnik-Fields Reaction. Molecules 2021; 26:2511. [PMID: 33923090 PMCID: PMC8123346 DOI: 10.3390/molecules26092511] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 11/21/2022] Open
Abstract
The Kabachnik-Fields reaction, comprising the condensation of an amine, oxo compound and a P-reagent (generally a >P(O)H species or trialkyl phosphite), still attracts interest due to the challenging synthetic procedures and the potential biological activity of the resulting α-aminophosphonic derivatives. Following the success of the first part (Molecules 2012, 17, 12821), here we summarize the synthetic developments in this field accumulated in the last decade. The procedures compiled include catalytic accomplishments as well as catalyst-free and/or solvent-free "greener" protocols. The products embrace α-aminophosphonates, α-aminophosphinates, and α-aminophosphine oxides along with different bis derivatives from the double phospha-Mannich approach. The newer developments of the aza-Pudovik reactions are also included.
Collapse
Affiliation(s)
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
| |
Collapse
|
16
|
Rina YA, Schmidt JAR. Double Hydrophosphorylation of Nitriles Catalyzed by Rare-Earth-Metal Lanthanum. J Org Chem 2020; 85:14720-14729. [DOI: 10.1021/acs.joc.0c02016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yesmin Akter Rina
- Department of Chemistry & Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft Street MS 602, Toledo, Ohio 43606-3390, United States
| | - Joseph A. R. Schmidt
- Department of Chemistry & Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft Street MS 602, Toledo, Ohio 43606-3390, United States
| |
Collapse
|
17
|
Boughaba S, Aouf Z, Bechiri O, Mathe-Allainmat M, Lebreton J, Aouf NE. H 6P 2W 18O 62·14H 2O as an efficient catalyst for the green synthesis of α-aminophosphonates from α-amino acids. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1799370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sara Boughaba
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Faculty of Sciences, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Zineb Aouf
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Faculty of Sciences, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Ouahiba Bechiri
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Monique Mathe-Allainmat
- Chemistry and Interdisciplinarity: Synthesis, Analysis, Modelization (CEISAM), Faculty of Sciences and Technology, Nantes University, UMR CNRS 6230, BP 92208, Nantes Cedex 3, France
| | - Jacques Lebreton
- Chemistry and Interdisciplinarity: Synthesis, Analysis, Modelization (CEISAM), Faculty of Sciences and Technology, Nantes University, UMR CNRS 6230, BP 92208, Nantes Cedex 3, France
| | - Nour-Eddine Aouf
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Faculty of Sciences, Badji Mokhtar-Annaba University, Annaba, Algeria
| |
Collapse
|
18
|
Marenin KS, Agafontsev AM, Bryleva YA, Gatilov YV, Glinskaya LA, Piryazev DA, Tkachev AV. Stereochemistry of the Kabachnik‐Fields Condensation of Terpenic Amino Oximes with Aldehydes and Dimethyl Phosphite. ChemistrySelect 2020. [DOI: 10.1002/slct.202002369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Konstantin S. Marenin
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences 9 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Alexander M. Agafontsev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences 9 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Yuliya A. Bryleva
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences 3 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
- Department of Natural Sciences Novosibirsk State University 2 Pirogiva str. 630090 Novosibirsk Russian Federation
| | - Yuri V. Gatilov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences 9 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Ludmila A. Glinskaya
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences 3 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Dmitry A. Piryazev
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences 3 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Alexey V. Tkachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences 9 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| |
Collapse
|
19
|
Iwanejko J, Wojaczyńska E, Turlej E, Maciejewska M, Wietrzyk J. Octahydroquinoxalin-2(1 H)-One-Based Aminophosphonic Acids and Their Derivatives-Biological Activity Towards Cancer Cells. MATERIALS 2020; 13:ma13102393. [PMID: 32455965 PMCID: PMC7287629 DOI: 10.3390/ma13102393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 01/27/2023]
Abstract
In the search for new antitumor agents, aminophosphonic acids and their derivatives based on octahydroquinoxalin-2(1H)-one scaffold were obtained and their cytotoxic properties and a mechanism of action were evaluated. Phosphonic acid and phosphonate moieties increased the antiproliferative activity in comparison to phenolic Mannich bases previously reported. Most of the obtained compounds revealed a strong antiproliferative effect against leukemia cell line (MV-4-11) with simultaneous low cytotoxicity against normal cell line (mouse fibroblasts-BALB/3T3). The most active compound was diphenyl-[(1R,6R)-3-oxo-2,5-diazabicyclo[4.4.0]dec-4-yl]phosphonate. Preliminary evaluation of the mechanism of action showed the proapoptotic effect associated with caspase 3/7 induction.
Collapse
Affiliation(s)
- Jakub Iwanejko
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
- Correspondence: ; Tel.: +48-71-320-2410
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (E.T.); (M.M.); (J.W.)
| | - Magdalena Maciejewska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (E.T.); (M.M.); (J.W.)
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (E.T.); (M.M.); (J.W.)
| |
Collapse
|
20
|
Huang Q, Zhu L, Yi D, Zhao X, Wei W. Silver-mediated aminophosphinoylation of propargyl alcohols with aromatic amines and H-phosphine oxides leading to α-aminophosphine oxides. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Kerru N, Gummidi L, Bhaskaruni SVHS, Maddila SN, Singh P, Jonnalagadda SB. A comparison between observed and DFT calculations on structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole. Sci Rep 2019; 9:19280. [PMID: 31848439 PMCID: PMC6917775 DOI: 10.1038/s41598-019-55793-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/30/2019] [Indexed: 01/09/2023] Open
Abstract
The crystal and molecular structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole 3 was reported, which was characterized by various spectroscopic techniques (FT-IR, NMR and HRMS) and single-crystal X-ray diffraction. The crystal structure 3 (C8H6ClN3S) crystallized in the orthorhombic space group Pna21 and the unit cell consisted of 8 asymmetric molecules. The unit cell parameters were a = 11.2027(2) Å, b = 7.6705(2) Å, c = 21.2166(6) Å, α = β = γ = 90°, V = 1823.15(8) Å3, Z = 8. In addition, the structural geometry (bond lengths, bond angles, and torsion angles), the electronic properties of mono and dimeric forms of compound 3 were calculated by using the density functional theory (DFT) method at B3LYP level 6-31+ G(d,p), 6-31++ G(d,p) and 6-311+ G(d,p) basis sets in ground state. A good correlation was found (R2 = 0.998) between the observed and theoretical vibrational frequencies. Frontier molecular orbitals (HOMO and LUMO) and Molecular Electrostatic Potential map of the compound was produced by using the optimized structures. The NBO analysis was suggested that the molecular system contains N-H…N hydrogen bonding, strong conjugative interactions and the molecule become more polarized owing to the movement of π-electron cloud from donor to acceptor. The calculated structural and geometrical results were in good rational agreement with the experimental X-ray crystal structure data of 1,3,4-thiadiazol-2-amine, 3. The compound 3 exhibited n→π* UV absorption peak of UV cutoff edge, and great magnitude of the first-order hyperpolarizability was observed. The obtained results suggest that compound 3 could have potential application as NLO material. Therefore, this study provides valuable insight experimentally and theoretically, for designing new chemical entities to meet the demands of specific applications.
Collapse
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, P/Bag X54001, Durban, 4000, South Africa
| | - Lalitha Gummidi
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, P/Bag X54001, Durban, 4000, South Africa
| | - Sandeep V H S Bhaskaruni
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, P/Bag X54001, Durban, 4000, South Africa
| | - Surya Narayana Maddila
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, P/Bag X54001, Durban, 4000, South Africa
| | - Parvesh Singh
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, P/Bag X54001, Durban, 4000, South Africa
| | - Sreekantha B Jonnalagadda
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, P/Bag X54001, Durban, 4000, South Africa.
| |
Collapse
|
22
|
Serbezeanu D, Carja ID, Nicolescu A, Aflori M, Vlad-Bubulac T, Butnaru M, Damian RF, Dunca S, Shova S. Synthesis, crystal structure and biological activity of new phosphoester-p-substituted-methylparabens. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
|
24
|
Yan H, Xiao XQ, Hider RC, Ma Y. A Simple Metal-Free Cyclization for the Synthesis of 4-Methylene-3-Substituted Quinazolinone and Quinazolinthione Derivatives: Experiment and Theory. Front Chem 2019; 7:584. [PMID: 31475141 PMCID: PMC6706782 DOI: 10.3389/fchem.2019.00584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/02/2019] [Indexed: 11/28/2022] Open
Abstract
A new series of 3-substituted 4-methylene-quinazolinthiones and 4-methylene-quinazolinones were synthesized in moderate to excellent yield through a simple reaction of 2-aminoacetophenones with isocyanates or isothiocyanates. The reaction shows good tolerance of many important functional groups in the presence of air and water under metal-free conditions. Only water is produced as a coproduct, rendering this “green” methodology a highly versatile and eco-friendly alternative to the existing methods for the construction of the quinazolinone/quinazolinthione framework. We have interpreted the reaction mechanism by use of quantum chemical calculations on the basis of state-of-the-art computational methods SMD-B3LYP-D3(BJ)/BS1//B3LYP/BS1.
Collapse
Affiliation(s)
- Huihui Yan
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xu-Qiong Xiao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Yongmin Ma
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
25
|
Novel Phosphorylated Penta-1,4-dien-3-one Derivatives: Design, Synthesis, and Biological Activity. Molecules 2019; 24:molecules24050925. [PMID: 30866406 PMCID: PMC6429309 DOI: 10.3390/molecules24050925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
A series of novel phosphorylated penta-1,4-dien-3-one derivatives were designed and synthesized. The structures of all title compounds were determined by 1H-NMR, 13C-NMR, 31P-NMR, and high-resolution mass spectrometry (HRMS). Bioassay results showed that several of the title compounds exhibited remarkable antibacterial and antiviral activities. Among these, compound 3g exhibited substantial antibacterial activity against Xanthomonas oryzae pv. Oryzae (Xoo), with a 50% effective concentration (EC50) value of 8.6 μg/mL, which was significantly superior to bismerthiazol (BT) (58.8 µg/mL) and thiodiazole-copper (TC) (78.7 μg/mL). In addition, compound 3h showed remarkable protective activity against tobacco mosaic virus (TMV), with an EC50 value of 104.2 μg/mL, which was superior to that of ningnanmycin (386.2 μg/mL). Furthermore, the microscale thermophoresis and molecular docking experiments on the interaction of compounds 3h and 3j with TMV coat protein (TMV CP) were also investigated. Compounds 3h and 3j bound to TMV CP with dissociation constants of 0.028 and 0.23 μmol/L, which were better than that of ningnanmycin (0.52 μmol/L). These results suggest that novel phosphorylated penta-1,4-dien-3-one derivatives may be considered as an activator for antibacterial and antiviral agents.
Collapse
|
26
|
Raouf H, Beyramabadi SA, Allameh S, Morsali A. Synthesis, experimental and theoretical characterizations of a 1,2,4-triazole Schiff base and its nickel(II) complex. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Islas RE, García JJ. Nickel-Catalyzed Hydrophosphonylation and Hydrogenation of Aromatic Nitriles Assisted by Lewis Acid. ChemCatChem 2019. [DOI: 10.1002/cctc.201801989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rosa E. Islas
- Facultad de Química; Universidad Nacional Autónoma de México; México D. F. 04510 México
| | - Juventino J. García
- Facultad de Química; Universidad Nacional Autónoma de México; México D. F. 04510 México
| |
Collapse
|