1
|
Khan A, Dawar P, De S. Thiourea compounds as multifaceted bioactive agents in medicinal chemistry. Bioorg Chem 2025; 158:108319. [PMID: 40058221 DOI: 10.1016/j.bioorg.2025.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Microbial resistance (MR) and cancer are global healthcare pitfalls that have caused millions of deaths and pose a significant pharmaceutical challenge, with clinical cases increasing. Thioureas are preferred structures in medicinal chemistry, chemosensors, and organic synthesis platforms. In fact, thiourea (TU) moieties serve as a common framework for several medications and bioactive substances, demonstrating a wide range of therapeutic and pharmacological accomplishments. The integration of the thiourea moiety into a diverse range of organic molecules has resulted in very flexible compounds with widespread uses in medicinal chemistry. Moreover, for over a century, TU and its metal complexes have been characterized for their biological activity. Finally, we provide an assessment and future outlook of different organo-thiourea derivatives, from the very beginning to the most recent discoveries in medicinal activity.
Collapse
Affiliation(s)
- Adeeba Khan
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Palak Dawar
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Suranjan De
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
2
|
Benali F, Boukoussa B, Issam I, Iqbal J, Mokhtar A, Hachemaoui M, Habeche F, Hacini S, Abboud M. Zinc nanoparticles encapsulated in porous biopolymer beads for reduction of water pollutants and antimicrobial activity. Int J Biol Macromol 2023; 248:125832. [PMID: 37473883 DOI: 10.1016/j.ijbiomac.2023.125832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
This work focuses on the preparation of composite beads from alginate crosslinked with copper at several loading percent and also loaded with ZnNPs. Th obtained samples were applied as catalysts for the reduction of the organic polluants 4-NP, MB, OG, MO, and CR in simple and binary systems. XRD results and TEM images confirmed the presence of ZnNPs in the polymer matrix. XRF and TGA analysis showed that the percentage of the cross-linking agent significantly influences the content of ZnNPs as well as the thermal stability of the resulting material. The catalytic activity of the composite beads showed that the Cu(4 %)-ALG(ZnNPs) sample was the best catalyst for all pollutants. In the simple system, the recorded rate constants for MB, MO, 4-NP, OG, and CR were 0.0133 s-1, 0.0076 s-1, 0.005 s-1, 0.0042 s-1, 0.0036 s-1, respectively. The catalyst was more selective towards the cationic MB dye for binary systems. For antibacterial and antifungal applications, the different materials containing ZnNPs and their counterparts containing Zn2+ were found to be active across all bacterial strains (Gram positive and Gram negative) as well as fungi, and the Zn2+-containing composites in particular performed better across all bacteria and fungi.
Collapse
Affiliation(s)
- Fadila Benali
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria
| | - Bouhadjar Boukoussa
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria; Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Ismail Issam
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Adel Mokhtar
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria; Département Génie des Procédés, Institut des Sciences et Technologies, Université Ahmed Zabana, 48000 Relizane, Algeria.
| | - Mohammed Hachemaoui
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Fatima Habeche
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria
| | - Salih Hacini
- Laboratoire de Chimie Fine LCF, Université Oran1 Ahmed Ben Bella, BP-1524, El-Mnaouer, 31000 Oran, Algeria
| | - Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
3
|
Preparation, spectral characterization, crystal structure and antibacterial activity of two new supramolecular complexes [Ni(phen)2Cl(H2O)]2(PF6)2.2caf.H2O (I), [Ni(phen)2(H2O)2]2(PF6)4. 3caf.4H2O(II) constructed via hydrogen bond linking. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
CHORFI Z, AGGOUN D, HOUCHI S, MESSASMA Z, El-MAKSOUD MSA, FERNÁNDEZ-GARCĨA M, LÓPEZ D, BENSOUICI C, OURARI A, OUENNOUGHI Y. Interaction of a Novel Inorganic Nickel Complex with Tyrosinase as Potential Inhibitor: Synthesis, Spectroscopic, DFT, NBO, Docking and ADMET Properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Ertano BY, Demir Y, Nural Y, Erdoğan O. Investigation of The Effect of Acylthiourea Derivatives on Diabetes‐Associated Enzymes. ChemistrySelect 2022. [DOI: 10.1002/slct.202204149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bükre Yaren Ertano
- Department of Molecular Biology and Genetics Faculty of Science Atatürk University Erzurum 25240 Turkey
- Department of Molecular Biology and Genetics Faculty of Science Atatürk University Erzurum 25240 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Yahya Nural
- Department of Analytical Chemistry Faculty of Pharmacy Mersin University Mersin 33169 Turkey
| | - Orhan Erdoğan
- Department of Molecular Biology and Genetics Faculty of Science Atatürk University Erzurum 25240 Turkey
- Department of Molecular Biology and Genetics Faculty of Science Atatürk University Erzurum 25240 Turkey
| |
Collapse
|
6
|
Zahra U, Saeed A, Abdul Fattah T, Flörke U, Erben MF. Recent trends in chemistry, structure, and various applications of 1-acyl-3-substituted thioureas: a detailed review. RSC Adv 2022; 12:12710-12745. [PMID: 35496330 PMCID: PMC9041296 DOI: 10.1039/d2ra01781d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 12/02/2022] Open
Abstract
The interest in acyl thioureas has continually been escalating owing to their extensive applications in diverse fields, such as synthetic precursors of new heterocycles, pharmacological and materials science, and technology. These scaffolds exhibit a wide variety of biological activities such as antitumor, enzyme inhibitory, anti-bacterial, anti-fungal, and anti-malarial activities and find utilization as chemosensors, adhesives, flame retardants, thermal stabilizers, antioxidants, polymers and organocatalysts. In addition, the synthesis, and applications of coordination complexes of these ligands have also been overviewed. The current review is a continuation of our previous efforts in this area, focusing on the recent advancements during the period 2017 to present. This review encapsulates the recently designed acyl thioureas, and their crystal structures, metal complexes and various applications from 2017 to present, including pharmacological aspects, chemosensing and heterogenous catalysis.![]()
Collapse
Affiliation(s)
- Urage Zahra
- Department of Chemistry, Quaid-i-Azam University-45320 Islamabad Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University-45320 Islamabad Pakistan
| | | | - Ulrich Flörke
- Department Chemie, Fakultät für Naturwissenschaften, Universität Paderborn Warburgerstrasse 100 D-33098 Paderborn Germany
| | - Mauricio F Erben
- CEQUINOR (UNLP, CONICET-CCT La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata Bv. 120 1465 La Plata 1900 Argentina
| |
Collapse
|
7
|
Jiang B, Chai Y, He X, Wang Y, Chen B, Li Y, Li R. Synthesis, herbicidal activity study, and molecular docking of novel acylthiourea derivatives. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2063289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Binbin Jiang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yunlong Chai
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Xu He
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bo Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yang Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ranhong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
8
|
Damena T, Zeleke D, Desalegn T, Demissie TB, Eswaramoorthy R. Synthesis, Characterization, and Biological Activities of Novel Vanadium(IV) and Cobalt(II) Complexes. ACS OMEGA 2022; 7:4389-4404. [PMID: 35155932 PMCID: PMC8829937 DOI: 10.1021/acsomega.1c06205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 05/08/2023]
Abstract
Herein, we report novel Co(II) and V(IV) complexes synthesized from an (E)-2-(((2-((2-hydroxyethyl)amino)quinolin-3-yl)methylene)amino)ethan-1-ol ligand (L), cobalt(II) chloride hexahydrate, and vanadyl(IV) sulfate in methanolic solutions. The ligand and the complexes were characterized by 1H NMR spectroscopy,13C NMR spectroscopy, UV-visible spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), mass spectroscopy (MS), thermal analysis, and molar conductance. The FT-IR spectral data showed that the ligand adopted a tridentate fashion when binding with the metal ions via the nitrogen atoms of the imine (C=N) and amine (N-H), and the oxygen atom of the hydroxyl group (O-H). The PXRD and SEM results indicated that the complexes are amorphous in nature. The density functional theory (DFT) calculated absorption and IR spectra agree very well with the corresponding experimental results. The antibacterial activities of the free ligand and its complexes were evaluated using a paper disk diffusion method. The complexes have better percent activitiy index than the free ligand. The cobalt complex exhibited a more recognizable antibacterial activity than the vanadium complex, specifically against Pseudomonas aeruginosa with a mean inhibition zone of 18.62 ± 0.19 mm, when compared with the positive control, ciprofloxacin, with a mean inhibition zone of 22.98 ± 0.08 mm at the same concentration. Furthermore, the antioxidant activities of the free ligand and its metal complexes were also determined in vitro using 2,2-diphenyl-1-picrylhydrazyl. The ligand exhibited less in vitro antioxidant activity than its transition metal complexes, in which the cobalt complex has a better antioxidant activity with half-inhibitory concentrations (IC50 of 16.01 μg/mL) than the ligand and the vanadium complex. Quantum molecular descriptors from the DFT calculations further support the experimental results. Molecular docking analysis also shed more light on the biological activities of the novel cobalt and vanadium complexes.
Collapse
Affiliation(s)
- Tadewos Damena
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O.Box 1888, Adama 1888 Ethiopia
| | - Digafie Zeleke
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O.Box 1888, Adama 1888 Ethiopia
- Department
of Chemistry, Jigjiga University, P.O.Box 1020, Jigjiga 1020, Ethiopia
| | - Tegene Desalegn
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O.Box 1888, Adama 1888 Ethiopia
| | - Taye B. Demissie
- Department
of Chemistry, University of Botswana, Notwane Rd, P/bag UB 00704 Gaborone, Botswana
| | - Rajalakshmanan Eswaramoorthy
- Department
of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute
of Medical and Technical Sciences, Saveetha
University, Chennai 602117, India
| |
Collapse
|
9
|
Leite CM, Honorato J, Martin ACBM, Silveira RG, Colombari FM, Amaral JC, Costa AR, Cominetti MR, Plutín AM, de Aguiar D, Vaz BG, Batista AA. Experimental and Theoretical DFT Study of Cu(I)/ N, N-Disubstituted- N'-acylthioureato Anticancer Complexes: Actin Cytoskeleton and Induction of Death by Apoptosis in Triple-Negative Breast Tumor Cells. Inorg Chem 2022; 61:664-677. [PMID: 34928593 DOI: 10.1021/acs.inorgchem.1c03389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Six complexes with the general formula [Cu(acylthioureato)(PPh3)2] were synthesized and characterized using spectroscopic techniques (IR, UV/visible, and 1D and 2D NMR), mass spectrometry, elemental analysis, and X-ray diffraction. Interpretation of the in vitro cytotoxicity data of Cu(I) complexes took into account their stability in cell culture medium. DFT calculations showed that NMR properties, such as the shielding of carbon atoms, are affected by relativistic effects, supported by the ZORA Hamiltonian in the theoretical calculations. Additionally, the calculation of the energies of the frontier molecular orbitals predicted that the structural changes of the acylthiourea ligands did not cause marked changes in the reactivity descriptors. All complexes were cytotoxic to the evaluated tumor cell lines [MDA-MB-231 (triple-negative breast cancer, TNBC), MCF-7 (breast cancer), and A549 (lung cancer)]. In the MDA-MB-231 cell line, complex 1 significantly altered the cytoskeleton of the cells, reducing the density and promoting the condensation of F-actin filaments. In addition, the compound caused an increase in the percentage of cells in the fragmented DNA region (sub-G0) and induced cell death via the apoptotic pathway starting at the IC50 concentration. Taken together, the results show that complex 1 has cytotoxic and apoptotic effects on TNBC cells, which is a cell line originating from an aggressive, difficult-to-treat breast cancer.
Collapse
Affiliation(s)
- Celisnolia M Leite
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - João Honorato
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | | | - Rafael G Silveira
- Instituto Federal Goiano, Campus Ceres, Ceres, Goiás 76300000, Brazil
| | - Felippe M Colombari
- Centro Nacional de Pesquisa em Energia e Materiais, Laboratório Nacional de Biorrenováveis, Campinas, São Paulo 13083-970, Brazil
| | - Jéssica C Amaral
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Analu R Costa
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Márcia R Cominetti
- Departamento de Gerontologia, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Ana M Plutín
- Laboratório de Síntesis Orgánica, Facultad de Química, Universidad de La Habana - UH, Habana 10400, Cuba
| | - Debora de Aguiar
- Instituto de Química, Universidade Federal de Goiás, Goiania, Goiás 74690900, Brazil
| | - Boniek G Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiania, Goiás 74690900, Brazil
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
- Instituto de Química, Universidade Federal de Goiás, Goiania, Goiás 74690900, Brazil
| |
Collapse
|
10
|
Israa M. Al-Jubanawi, Al-Sawaad HZ, Alwaaly AA. Synthesis Characterization and Corrosion Inhibition of Thiourea and Phthalic Anhydride Complex with Ni(II) for Carbon Steel Alloy C1010 0.1 M Hydrochloric Acid. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2021. [DOI: 10.3103/s1068375521050057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Begum R, Rehman MU, Shahid K, Haider A, Iqbal M, Tahir MN, Ali S. Synthesis, structural elucidation, DNA-binding and biological activity of nickel(II) mixed ligand carboxylate complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Wu YP, Wang Y, Li JH, Li RH, Wang J, Li SX, Gao XY, Dong L, Li AQ. Design, synthesis, herbicidal activity, in vivo enzyme activity evaluation and molecular docking study of acylthiourea derivatives as novel acetohydroxyacid synthase inhibitor. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Li JH, Li RH, Wang Y, Li SX, Wu YP, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity, enzyme activity, and molecular docking of novel aniline thiourea. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1901702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jia hui Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ran hong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Sui xin Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yun peng Wu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jing Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yong gang Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bei jie Xie
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
14
|
Li JH, Wang Y, Wu YP, Li RH, Liang S, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity study and molecular docking of novel pyrimidine thiourea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104766. [PMID: 33518053 DOI: 10.1016/j.pestbp.2020.104766] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
According to the pharmacophore binding strategy and principle of bioelectronic isobaric, used the sulfonylurea bridge as the parent structure, a series of novel thiourea compounds containing aromatic-substituted pyrimidines were designed and synthesized. The preliminary herbicidal activity tests showed that some compounds had good herbicidal activity against Digitaria adscendens, Amaranthus retroflexus, especially for compound 4d and 4f. The results showed that compound 4d had an inhibition rate of 81.5% on the root growth of Brassica napus L. at the concentration of 100 mg L-1, and compound 4f had an inhibition rate of 81% on the root growth of Digitaria adscendens at the concentration of 100 mg L-1. Compounds 4d and 4f had higher comparative activity on Echinochloa crus-galli than the commercial herbicide bensulfuron-methyl. The preliminary structure-activity relationship (SAR) was also summarized. We also tested the in vivo AHAS enzyme activity inhibition experiment of 14 compounds at 100 mg L-1, and the results showed that they all have inhibitory activity on the enzyme, with the highest inhibition rate reaching 44.4% (compound 4d). Based on the results of molecular docking to yeast acetohydroxyacid synthase (AHAS), the possible herbicidal activity mechanism of these compounds was evaluated.
Collapse
Affiliation(s)
- Jia-Hui Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China.
| | - Yun-Peng Wu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ran-Hong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Shuang Liang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jing Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yong-Gang Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bei-Jie Xie
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
15
|
Nkabyo HA, Barnard I, Koch KR, Luckay RC. Recent advances in the coordination and supramolecular chemistry of monopodal and bipodal acylthiourea-based ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213588] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Patel NJ, Bhatt BS, Vekariya PA, Vaidya FU, Pathak C, Pandya J, Patel MN. Synthesis, characterization, structural-activity relationship and biomolecular interaction studies of heteroleptic Pd(II) complexes with acetyl pyridine scaffold. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Mughal EU, Mirzaei M, Sadiq A, Fatima S, Naseem A, Naeem N, Fatima N, Kausar S, Altaf AA, Zafar MN, Khan BA. Terpyridine-metal complexes: effects of different substituents on their physico-chemical properties and density functional theory studies. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201208. [PMID: 33391801 PMCID: PMC7735333 DOI: 10.1098/rsos.201208] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
A series of different substituted terpyridine (tpy)-based ligands have been synthesized by Kröhnke method. Their binding behaviour was evaluated by complexing them with Co(II), Fe(II) and Zn(II) ions, which resulted in interesting coordination compounds with formulae, [Zn(tpy)2]PF6, [Co(tpy)2](PF6)2, [Fe(tpy)2](PF6)2 and interesting spectroscopic properties. Their absorption and emission behaviours in dilute solutions were investigated in order to explain structure-property associations and demonstrate the impact of different aryl substituents on the terpyridine scaffold as well as the role of the metal on the complexes. Photo-luminescence analysis of the complexes in acetonitrile solution revealed a transition from hypsochromic to bathochromic shift. All the compounds displayed remarkable photo-luminescent properties and various maximum emission peaks owing to the different nature of the functional groups. Furthermore, the anti-microbial potential of ligands and complexes was evaluated with docking analyses carried out to investigate the binding affinity of terpyridine-based ligands along with corresponding proteins (shikimate dehydrogenase and penicillin-binding protein) binding sites. To obtain further insight into molecular orbital distributions and spectroscopic properties, density functional theory calculations were performed for representative complexes. The photophysical activity and interactions between chromophore structure and properties were both investigated experimentally as well as theoretically.
Collapse
Affiliation(s)
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, PO Box 9177948974, Mashhad, Iran
| | - Amina Sadiq
- Department of Chemistry, Government College Women University, Sialkot 51300, Pakistan
| | - Sana Fatima
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
| | - Ayesha Naseem
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
| | - Nighat Fatima
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Samia Kausar
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
| | - Ataf Ali Altaf
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
| | | | - Bilal Ahmad Khan
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| |
Collapse
|
18
|
Khairul WM, Wahab FFA, Soh SKC, Shamsuddin M, Daud AI. Palladium(II)-pivaloyl thiourea complexes: Synthesis, characterisation and their catalytic activity in mild Sonogashira cross-coupling reaction. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Khan M, Khan N, Ghazal K, Shoaib S, Ali I, Rauf MK, Badshah A, Tahir MN, Rehman AU. Synthesis, characterization, crystal structure,in-vitrocytotoxicity, antibacterial, and antifungal activities of nickel(II) and cobalt(III) complexes with acylthioureas. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1793136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mahira Khan
- Department of Chemistry, Sardar Bahadur Khan University, Quetta, Pakistan
| | - Naqeebullah Khan
- Department of Chemistry, University of Balochistan, Quetta, Pakistan
| | - Kinza Ghazal
- Department of Chemistry, Sardar Bahadur Khan University, Quetta, Pakistan
| | - Sara Shoaib
- Department of Chemistry, Sardar Bahadur Khan University, Quetta, Pakistan
| | - Irshad Ali
- Department of Chemistry, University of Balochistan, Quetta, Pakistan
| | | | - Amin Badshah
- Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | | | - Attiq-Ur Rehman
- Department of Chemistry, University of Balochistan, Quetta, Pakistan
| |
Collapse
|
20
|
Wang Y, Khan MR, Niu X, Zhang W, Li Y, Li B, Hao Y, Li J, Liu Z. Synthesis, Structures, and Antibacterial Activities of Four Similar 1D Metal-organic Polymers with Different Metal Ions. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yufei Wang
- The College of Chemical Engineering and Food Sciences; Zhengzhou Institute of Technology; 450044 Zhengzhou Henan P. R. China
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Misbha Rafiq Khan
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Xiaoge Niu
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Wenjing Zhang
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Yulin Li
- The College of Chemical Engineering and Food Sciences; Zhengzhou Institute of Technology; 450044 Zhengzhou Henan P. R. China
| | - Bohan Li
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Yaping Hao
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Jinpeng Li
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| | - Zhongyi Liu
- College of Chemistry and Green Catalysis Center; Zhengzhou University; 450044 Zhengzhou Henan P. R. China
| |
Collapse
|
21
|
Lapasam A, Kollipara MR. A survey of crystal structures and biological activities of platinum group metal complexes containing N-acylthiourea ligands. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1764956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Agreeda Lapasam
- Centre for Advanced Studies in Chemistry, North Eastern Hill University, Shillong, India
| | - Mohan Rao Kollipara
- Centre for Advanced Studies in Chemistry, North Eastern Hill University, Shillong, India
| |
Collapse
|
22
|
Le CD, Pham CT, Nguyen HH. Zinc(II) {2}-metallacoronates and {2}-metallacryptates based on dipicolinoylbis(N,N-diethylthiourea): Structures and biological activities. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Akhter S, Choudhary MI, Siddiqui H, Yousuf S. Crystal structure and Hirshfeld surface analysis of N-(2-chloro-phenyl-carbamo-thio-yl)-4-fluoro-benzamide and N-(4-bromo-phenyl-carbamo-thio-yl)-4-fluoro-benzamide. Acta Crystallogr E Crystallogr Commun 2019; 75:1026-1029. [PMID: 31392018 PMCID: PMC6659326 DOI: 10.1107/s2056989019008569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/16/2019] [Indexed: 11/10/2022]
Abstract
The title compounds, C14H10ClFN2OS (1) and C14H10BrFN2OS (2), were synthesized by two-step reactions. The dihedral angles between the aromatic rings are 31.99 (3) and 9.17 (5)° for 1 and 2, respectively. Compound 1 features an intra-molecular bifurcated N-H⋯(O,Cl) link due to the presence of the ortho-Cl atom on the benzene ring, whereas 2 features an intra-molecular N-H⋯O hydrogen bond. In the crystal of 1, inversion dimers linked by pairs of N-H⋯S hydrogen bonds generate R 2 2(8) loops. The extended structure of 2 features the same motif but an additional weak C-H⋯S inter-action links the inversion dimers into [100] double columns. Hirshfeld surface analyses indicate that the most important contributors towards the crystal packing are H⋯H (26.6%), S⋯H/H.·S (13.8%) and Cl⋯H/H⋯Cl (9.5%) contacts for 1 and H⋯H (19.7%), C⋯H/H⋯C (14.8%) and Br⋯H/H⋯Br (12.4%) contacts for 2.
Collapse
Affiliation(s)
- Sidra Akhter
- H.E.J. Research Institute Of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute Of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hina Siddiqui
- H.E.J. Research Institute Of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sammer Yousuf
- H.E.J. Research Institute Of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
24
|
Syntheses, crystal structures, antibacterial activities of Cu(II) and Ni(II) complexes based on terpyridine polycarboxylic acid ligand. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Guo K, Li Y, Yu S, Tang H, Li G. Enhancement of Aqua‐Ammonia Vapor on Proton Conduction for Two Water‐Tolerant Complicated Copper Cluster Compounds. ChemistrySelect 2019. [DOI: 10.1002/slct.201900154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kai‐Meng Guo
- College of Chemistry and Molecular EngineeringZhengzhou university Henan Zhengzhou 450001 P.R. China
| | - Yi‐Lin Li
- Reading AcademyNanjing University of Information Science & Technology Nanjing 210044 Jiangsu P. R. China
| | - Shi‐Hang Yu
- College of Chemistry and Molecular EngineeringZhengzhou university Henan Zhengzhou 450001 P.R. China
| | - Hua‐Biao Tang
- College of Chemistry and Molecular EngineeringZhengzhou university Henan Zhengzhou 450001 P.R. China
| | - Gang Li
- College of Chemistry and Molecular EngineeringZhengzhou university Henan Zhengzhou 450001 P.R. China
| |
Collapse
|