1
|
Zhang LL, Huang X, Azam M, Yuan HX, Ma FJ, Cheng YZ, Zhang LP, Sun D. Silver(I) Complexes with Mefenamic Acid and Nitrogen Heterocyclic Ligands: Synthesis, Characterization, and Biological Evaluation. Inorg Chem 2024; 63:12624-12634. [PMID: 38910548 DOI: 10.1021/acs.inorgchem.4c01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Four Ag(I) complexes with mefenamato and nitrogen heterocyclic ligands, [Ag(2-apy)(mef)]2 (1), [Ag(3-apy)(mef)] (2), [Ag2(tmpyz)(mef)2] (3), and {[Ag(4,4'-bipy)(mef)]2(CH3CN)1.5(H2O)2}n (4), (mef = mefenamato, 2-apy = 2-aminopyridine, 3-apy = 3-aminopyridine, tmpyz = 2,3,5,6-tetramethylpyrazine, 4,4'-bipy = 4,4'-bipyridine), were synthesized and characterized. The interactions of these complexes with BSA were investigated by fluorescence spectroscopy, which indicated that these complexes quench the fluorescence of BSA by a static mechanism. The fluorescence data also indicated that the complexes showed good affinity for BSA, and one binding site on BSA was suitable for the complexes. The in vitro cytotoxicity of the four complexes against human cancer cell lines (MCF-7, HepG-2, A549, and MDA-MB-468) and one normal cell line (HTR-8) was evaluated by the MTT assay. Complex 1 displayed high cytotoxic activity against A549 cells. Further studies revealed that complex 1 could enhance the intracellular levels of ROS (reactive oxygen species) in A549 cells, cause cell cycle arrest in the G0/G1 phase, and induce apoptosis in A549 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Lu-Lin Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Xiang Huang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P.O. BOX 2455, Riyadh 11451, Saudi Arabia
| | - Hua-Xin Yuan
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Feng-Jie Ma
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Yuan-Zheng Cheng
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Li-Ping Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, P. R. China
| |
Collapse
|
2
|
Ranjbary F, Fathi F, Pakchin PS, Maleki S. Astaxanthin Binding Affinity to DNA: Studied By Fluorescence, Surface Plasmon Resonance and Molecular Docking Methods. J Fluoresc 2024; 34:755-764. [PMID: 37358756 DOI: 10.1007/s10895-023-03310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Carotenoid astaxanthin (Ax), a pink-red pigment, with its anti-oxidative feature, is useful as a therapeutic element for numerous diseases. The purpose of this study is to investigate the binding affinity of Ax to double strand (ds) DNA evaluated by using the fluorescence spectroscopy, surface plasmon resonance (SPR) and docking approaches. The fluorescence results show that Ax can quench the intensity of DNA fluorescence via a static quenching way. In the SPR method, for affinity evaluation, DNA molecules were attached on a gold sensor surface. Using different amounts of ds DNA, the kinetic values KD, KA, and Ka were calculated. The Van't Hoff equation was used to estimate thermodynamic parameters including enthalpy (∆H), entropy (∆S) and Gibbs free energy (∆G) changes. The obtained results for KD in SPR (6.89×10-5 M) and fluorescence (KD=0.76×10-5 M) methods were in line with each other. Thermodynamic studies were carried out at four different temperatures, and the resulted negative data for ΔH and ΔS displayed that the main binding strength in the interaction of Ax with DNA was hydrogen bonding. ΔG value calculated by fluorescence method was near -38 kJ. mol-1 and using the docking method, estimated -9.95 kcal. mol-1 (-41.63 kJ. mol-1) which shows the binding behavior has an exothermic and spontaneous mechanism. Molecular docking results confirmed that the side chains of Ax interact specifically with base pairs and the DNA backbone.
Collapse
Affiliation(s)
- Farideh Ranjbary
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaiyeh Maleki
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Ma FJ, Huang X, Li XY, Tang SL, Li DJ, Cheng YZ, Azam M, Zhang LP, Sun D. Synthesis, structure and biological activity of silver(I) complexes containing triphenylphosphine and non-steroidal anti-inflammatory drug ligands. J Inorg Biochem 2023; 250:112404. [PMID: 39492372 DOI: 10.1016/j.jinorgbio.2023.112404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
Two Ag(I) complexes containing triphenylphosphine and non-steroidal anti-inflammatory drug ligands were synthesized and investigated using various spectroscopic studies and single crystal X-ray crystallography. The binding properties of tolfenamic acid, ibuprofen and the two complexes with DNA and BSA were investigated using UV or fluorescence spectroscopy. The results showed that two Ag(I) complexes bound to DNA by the intercalation mode and interacted with BSA using a static quenching procedure. Furthermore, the results of fluorescence titration suggested that the complexes had good affinity for BSA and one binding site close to BSA. The in vitro cytotoxicity of tolfenamic acid, ibuprofen, and the two complexes against four human carcinoma cell lines (MCF-7, HepG-2, A549, and HeLa cells) was tested using an MTT assay. Complex 1 had higher cytotoxicity against HeLa cells. The intracellular reactive oxygen species (ROS) assay showed complex 1 induced the ROS generation in HeLa cells in a concentration dependent manner. Flow cytometry analysis showed complex 1 could suppress the HeLa cells growth during the G0/G1 phase and induce apoptosis in dose-depended manner.
Collapse
Affiliation(s)
- Feng-Jie Ma
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Xiang Huang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Xue-Ying Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Shi-Li Tang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - De-Jun Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Yuan-Zheng Cheng
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Li-Ping Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, PR China.
| |
Collapse
|
4
|
Çelik C, Üstün E, Şahin N, Tutar U. Antimicrobial and Antibiofilm Activity, and Bovine Serum Albumin Binding Properties of Benzimidazolium Type NHC Salts and Their Ag(I)‐NHC Complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cem Çelik
- Faculty of Medicine, Department of Medical Microbiology Cumhuriyet University Sivas Turkey
| | - Elvan Üstün
- Faculty of Art and Science, Department of Chemistry Ordu University Ordu Turkey
| | - Neslihan Şahin
- Faculty of Education, Department of Science Education Cumhuriyet University Sivas Turkey
| | - Uğur Tutar
- Faculty of Pharmacy, Department of Botanica Cumhuriyet University Sivas Turkey
| |
Collapse
|
5
|
Hou C, Wang Z, Li X, Bai Y, Chai J, Li X, Gao J, Xu H. Study of modeling and optimization for predicting the acute toxicity of carbamate pesticides using the binding information with carrier protein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121038. [PMID: 35189491 DOI: 10.1016/j.saa.2022.121038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
To predict drug acute toxicity using the binding information with human serum albumin, our research group established a new method (Carrier protein binding information-toxicity relationship, CPBITR). Unfortunately, the previous model had too few data sets which may affect the accuracy and credibility of the model. In this paper, therefore, we measured the binding modes of three carbamate pesticides, Bendiocarb, Butocarboxim and Dioxacarb with human serum albumin (HSA) to supplement the previously modeled training set. Multispectral methods and molecular docking were used to study their binding modes. We built and optimized the previous models with the combined information of three different toxicity pesticides and HSA in order to find better prediction method. The results showed that Back-propagation Artificial Neural Network model has the best fitting effect among these models. In conclusion, the proposed model effectively improves the accuracy and credibility of the existing model. It results in significant predict drug acute toxicity using the binding information with carrier protein and contribute to drug development and research.
Collapse
Affiliation(s)
- Chenxin Hou
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Zishi Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Xiangshuai Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Yuqian Bai
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Jiashuang Chai
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Xiangfen Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Jinsheng Gao
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| |
Collapse
|
6
|
Ghasemi L, Behzad M, Khaleghian A, Abbasi A, Abedi A. Synthesis and characterization of two new mixed-ligand Cu(II) complexes of a tridentate NN'O type Schiff base ligand and N-donor heterocyclic co-ligands: In vitro anticancer assay, DNA/human leukemia/COVID-19 molecular docking studies, and pharmacophore modeling. Appl Organomet Chem 2022; 36:e6639. [PMID: 35538931 PMCID: PMC9073997 DOI: 10.1002/aoc.6639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
Two new mixed-ligand complexes with general formula [Cu(SB)(L')]ClO4 (1 and 2) were synthesized and characterized by different spectroscopic and analytical techniques including Fourier transform infrared (FT-IR) and UV-Vis spectroscopy and elemental analyses. The SB ligand is an unsymmetrical tridentate NN'O type Schiff base ligand that was derived from the condensation of 1,2-ethylenediamine and 5-bromo-2-hydroxy-3-nitrobenzaldehyde. The L' ligand is pyridine in (1) and 2,2'-dimethyl-4,4'-bithiazole (BTZ) in (2). Crystal structure of (2) was also obtained. The two complexes were used as anticancer agents against leukemia cancer cell line HL-60 and showed considerable anticancer activity. The anticancer activity of these complexes was comparable with the standard drug 5-fluorouracil (5-FU). Molecular docking and pharmacophore studies were also performed on DNA (PDB:1BNA) and leukemia inhibitor factor (LIF) (PDB:1EMR) to further investigate the anticancer and anti-COVID activity of these complexes. The molecular docking results against DNA revealed that (1) preferentially binds to the major groove of DNA receptor whereas (2) binds to the minor groove. Complex (2) performed better with 1EMR. The experimental and theoretical results showed good correlation. Molecular docking and pharmacophore studies were also applied to study the interactions between the synthesized complexes and SARS-CoV-2 virus receptor protein (PDB ID:6LU7). The results revealed that complex (2) had better interaction than (1), the free ligands (SB and BTZ), and the standard drug favipiravir.
Collapse
Affiliation(s)
| | | | - Ali Khaleghian
- Biochemistry Department, Faculty of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Abbasi
- School of Chemistry, College of ScienceUniversity of TehranTehranIran
| | - Anita Abedi
- Department of Chemistry, North Tehran BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
7
|
Xing Y, Wang Z, Li X, Hou C, Chai J, Li X, Su J, Gao J, Xu H. A new method for predicting the acute toxicity of carbamate pesticides based on the perspective of binding information with carrier protein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120188. [PMID: 34358782 DOI: 10.1016/j.saa.2021.120188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Toxicity is one of the most important factors limiting the success of new drug development. In this paper, we built a fast and convenient new method (Carrier protein binding information-toxicity relationship, CPBITR) for predicting drug acute toxicity based on the perspective of binding information with carrier protein. First, we studied the binding information between carbamate pesticides and human serum albumin (HSA) through various spectroscopic methods and molecular docking. Then a total of 16 models were established to clarify the relationship between binding information with HSA and drug toxicity. The results showed that the binding information was related to toxicity. Finally we obtained the effective toxicity prediction model for carbamate pesticides. And the "Platform for Predicting Drug Toxicity Based on the Information of Binding with Carrier Protein" was established with the Back-propagation neural network model. We proposed and proved that it was feasible to predict drug toxicity from this new perspective: binding with carrier protein. According to this new perspective, toxicity prediction model of other drugs can also be established. This new method has the advantages of convenience and fast, and can be used to screen out low-toxic drugs quickly in the early stage. It is helpful for drug research and development.
Collapse
Affiliation(s)
- Yue Xing
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Zishi Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Xiangshuai Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Chenxin Hou
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Jiashuang Chai
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Xiangfen Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Jing Su
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Jinsheng Gao
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
8
|
Zakarianezhad M, Makiabadi B, Hosseini SS. Theoretical study of the reaction mechanism between triphenylphosphine with dialkyl acetylenedicarboxylates in the presence of benzotriazole. Theor Chem Acc 2021. [DOI: 10.1007/s00214-020-02714-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Wang X, Xing Y, Su J, Wang C, Wang Z, Yu Y, Xu H, Ma D. Synthesis of two new naphthalene-containing compounds and their bindings to human serum albumin. J Biomol Struct Dyn 2020; 39:3435-3448. [DOI: 10.1080/07391102.2020.1764867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Xia Wang
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Yue Xing
- School of Agricultural Resources and Environment, Heilongjiang University, Harbin, China
| | - Jing Su
- School of Agricultural Resources and Environment, Heilongjiang University, Harbin, China
| | - Changsheng Wang
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Zishi Wang
- School of Agricultural Resources and Environment, Heilongjiang University, Harbin, China
| | - Yinghui Yu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Hongliang Xu
- School of Agricultural Resources and Environment, Heilongjiang University, Harbin, China
| | - DongSheng Ma
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| |
Collapse
|
10
|
Bai H, Yang Y, Bao J, Wu A, Qiao Y, Guo X, Wang M, Li W, Liu Y, Zhu X. High-efficient fabrication of core-shell-shell structured SiO 2@GdPO 4:Tb@SiO 2 nanoparticles with improved luminescence. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192235. [PMID: 32537211 PMCID: PMC7277279 DOI: 10.1098/rsos.192235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
SiO2@GdPO4:Tb@SiO2 nanoparticles with core-shell-shell structure were successfully synthesized by a cheap silane coupling agent grafting method at room temperature. This method not only homogeneously coated rare-earth phosphate nanoparticles on the surface of silica spheres but also saved the use of rare-earth resources. The obtained nanoparticles consisted of SiO2 core with a diameter of approximately 210 nm, GdPO4:Tb intermediate shell with thickness of approximately 7 nm, and SiO2 outer shell with thickness of approximately 20 nm. This unique core-shell-shell structured nanoparticles exhibited strong luminescence properties compared with GdPO4:Tb nanoparticles. The core-shell-shell structured nanoparticles can effectively quench the intrinsic fluorescence of bovine serum albumin through a static quenching mode. The as-synthesized nanoparticles show great potential in biological cell imaging and cancer treatment.
Collapse
Affiliation(s)
- He Bai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia Medical University, Hohhot 010110, People's Republic of China
| | - Yunjiang Yang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia Medical University, Hohhot 010110, People's Republic of China
| | - Jinrong Bao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia Medical University, Hohhot 010110, People's Republic of China
| | - Anping Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia Medical University, Hohhot 010110, People's Republic of China
| | - Yan Qiao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia Medical University, Hohhot 010110, People's Republic of China
| | - Xueyuan Guo
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia Medical University, Hohhot 010110, People's Republic of China
| | - Mingyuan Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia Medical University, Hohhot 010110, People's Republic of China
| | - Wenxian Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia Medical University, Hohhot 010110, People's Republic of China
| | - Ying Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia Medical University, Hohhot 010110, People's Republic of China
| | - Xiaowei Zhu
- College of Pharmacology, Inner Mongolia Medical University, Hohhot 010110, People's Republic of China
| |
Collapse
|
11
|
Jaros SW, Sliwińska-Hill U, Białońska A, Nesterov DS, Kuropka P, Sokolnicki J, Bażanów B, Smoleński P. Light-stable polypyridine silver(i) complexes of 1,3,5-triaza-7-phosphaadamantane (PTA) and 1,3,5-triaza-7-phosphaadamantane-7-sulfide (PTA[double bond, length as m-dash]S): significant antiproliferative activity of representative examples in aqueous media. Dalton Trans 2019; 48:11235-11249. [PMID: 31237306 DOI: 10.1039/c9dt01646e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of novel silver(i) 2,2':6',2''-terpyridine (tpy), 4'-(4-methylphenyl)-2,2':6':2''-terpyridine (tpy-Ph-Me) and 1,10-phenanthroline-5,6-dione (dione) derivatives containing PTA (1,3,5-triaza-7-phosphaadamantane) or 1,3,5-triaza-7-phosphaadamantane-7-sulfide (PTA[double bond, length as m-dash]S) have been synthesized and fully characterized. Two types of complexes have been obtained, monocationic [Ag(tpy)(PTA)](NO3) (1), [Ag(tpy-Ph-Me)(PTA)](NO3) (2), [Ag(dione)(PTA[double bond, length as m-dash]S)](BF4) (4) and [Ag(dione)2](PF6) (5) and neutral [Ag(dione)(PTA[double bond, length as m-dash]S)(NO3)] (3). The solid-state structures of four complexes have been determined by single-crystal X-ray diffraction. Complexes 1 and 2 are luminescent at room temperature and 77 K while 5 shows emission only at 77 K. Compounds 3 and 4 are not emissive. Furthermore, representative light-stable and water-soluble 1 and 3 were evaluated for their cytotoxic activities on the normal human dermal fibroblast (NHDF) cell line and their antitumor activity using the human lung carcinoma (A549), epithelioid cervix carcinoma (HeLa) and human breast adenocarcinoma (MCF-7) cell lines. Interactions between the complexes and human serum albumin (HSA) using UV-Vis, fluorescence and circular dichroism spectroscopy (CD) were also investigated.
Collapse
Affiliation(s)
- Sabina W Jaros
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Urszula Sliwińska-Hill
- Department of Analytical Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-566 Wrocław, Poland
| | - Agata Białońska
- Department of Analytical Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-566 Wrocław, Poland
| | - Dmytro S Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Piotr Kuropka
- Department of Histology and Embryology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Jerzy Sokolnicki
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Barbara Bażanów
- Department of Veterinary Microbiology, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Piotr Smoleński
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|