Singh AP, Singh MP, Baruah JB. Changes in the proportions of an active pharmaceutical through cocrystals.
Drug Dev Res 2021;
82:1144-1153. [PMID:
33792939 DOI:
10.1002/ddr.21818]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 11/06/2022]
Abstract
In this study, the modulation of amounts sulfathiazolium cations in different 2,6-pyridinedicarboxylates is demonstrated. An uncommon monoionic sulfathiazolium zinc 2,6-pyridinedicarboxylate (1:1 electrolyte) complex was characterized. Conventional sulfathiazolium zinc-bis-2,6-pyridinedicarboxylate dianionic complexes (2:1 electrolyte) were formed when hydroxyaromatic compounds such as 1,3-dihydroxybenzene or 3-nitrophenol were used as guest components. Thus, with the aid of the hydroxyaromatic molecules the zinc-bis-2,6-pyridinedicarboxylate complexes were stabilized with the relatively large sized sulfathiazolium cations. It was a consequence of domain expansion by the phenolic compounds. Sandwiched aromatic guests between the 2,6-pyridinedicarboxylates provided appropriate packing to accommodate the two large cations in the self-assemblies, which helped to modulate the amounts of sulfathiazole in different formulations. Antibacterial activities with E. coli DH5α have shown that the salt and the complexes have lower g/ml antibacterial activity than the parent drug.
Collapse