1
|
Mohanty M, Das S, Pattanayak PD, Lima S, Kaminsky W, Dinda R. Ru III-Morpholine-Derived Thiosemicarbazone-Based Metallodrugs: Lysosome-Targeted Anticancer Agents. ACS APPLIED BIO MATERIALS 2025; 8:1210-1226. [PMID: 39806879 DOI: 10.1021/acsabm.4c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The idea of coordinating biologically active ligand systems to metal centers to exploit their synergistic effects has gained momentum. Therefore, in this report, three RuIII complexes 1-3 of morpholine-derived thiosemicarbazone ligands have been prepared and characterized by spectroscopy and HRMS along with the structure of 2 through a single-crystal X-ray diffraction study. The solution stability of 1-3 was tested using conventional techniques such as UV-vis and HRMS. Further, the anticancer activity of 1-3 was tested in HT-29 and HeLa cancer cell lines. To gain insight into their mechanism of action, the cytotoxicity, hydrophobicity, and the interaction of 1-3 with DNA and HSA were evaluated by different conventional methods such as absorption, fluorescence, and circular dichroism studies. Along with favorable biomolecule interaction, 1-3 revealed potent selectivity toward cancer cells, which is a prerequisite for the generation of an anticancer drug. According to cell viability results, 1 has the highest cytotoxicity among all in the group, against both cells, respectively. Additionally, the fluorescence-active ruthenium complexes selectively target lysosomes, which is evaluated by live-cell imaging. 1-3 disrupt the lysosome membrane potential by generating an excessive amount of reactive oxygen species, which results in an apoptotic mode of cell death.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | | | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
2
|
Ranjitha N, Krishnamurthy G, Bhojya Naik H, Pari M, Afroz L, Sumadevi K, Manjunatha M. Structural elucidation, voltammetric detection of dopamine, molecular docking and biological inspection of novel 4-aminoantipyrine derived Schiff bases in Co (II), Ni (II) and Cu (II) complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Dehghani FS, Kalantari R, Rastegari B, Asadi Z. Water-soluble nickel (II) Schiff base complexes: Synthesis, structural characterization, DNA binding affinity, DNA cleavage, cytotoxicity, and computational studies. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:234-261. [PMID: 36106987 DOI: 10.1080/15257770.2022.2121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Two water-soluble nickel (II) Schiff base complexes were prepared and their interaction with fish sperm DNA (FS-DNA) was investigated by various methods including UV-vis spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and viscometric measurements. Complex 1: [N,N'-bis{5-[(triphenyl phosphonium chloride)-methyl] salicylidine}-3,4-diaminobenzophenone]nickel(II) perchloride dihydrate: [Ni(5-CH2PPh3-3,4-salophen)] (ClO4)2.2 H2O was synthesized as a new complex and characterized by elemental analysis, IR, 1H NMR, thermal gravimetric analysis (TGA) and UV-vis spectroscopy. Complex 2: sodium [(N,N'-bis(5-sulfosalicyliden)-3, 4-diaminobenzophenone)aqua] nickel(II) hydrate: Na2[Ni (5-SO3-3,4-salbenz)(H2O)]. H2O was already synthesized by our research team, but in this study, its function as a DNA-binding compound was tested, and compared with the results of complex 1-DNA binding. The calculation of different constants using absorption and emission data, all confirmed the stronger binding ability of complex 1 than complex 2 with DNA. Different thermodynamic parameters showed the interactions between DNA and complexes were the type of hydrophobic interaction for complex 1 and electrostatic interaction for complex 2. Also, the negative values of free energy changes proved a spontaneous DNA binding process. Based on cell toxicity assay against two different cell lines including Jurkat and MCF-7, the effect of complex 1 was comparable to cisplatin, and the toxicity mechanism was further justified by bright field microscopy, flow cytometry, and cleavage of DNA in the presence of H2O2. Besides, the docking calculations suggested intercalation after measuring the lowest-energy between the complexes and DNA. For both complexes, all analytical, spectroscopic, and molecular modeling methods supported partial intercalation as the main binding mode between the complexes and DNA.
Collapse
Affiliation(s)
| | - Razieh Kalantari
- Department of Chemistry, School of Sciences, Shiraz University, Shiraz, Iran
| | - Banafsheh Rastegari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Science, Shiraz, Iran
| | - Zahra Asadi
- Department of Chemistry, School of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Bala I, Singh K, Kataria R, Sindhu M. Exploration of structural, electrostatic and photophysical behaviour of novel Ni (II), Cu (II) and Zn (II) complexes, and their utility as potent antimicrobial agents. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Indu Bala
- Department of Chemistry Kurukshetra University Kurukshetra Haryana India
| | - Kiran Singh
- Department of Chemistry Kurukshetra University Kurukshetra Haryana India
| | - Ramesh Kataria
- Department of Chemistry and Center of Advanced Studies in Chemistry Panjab University Chandigarh India
| | - Meena Sindhu
- Department of Microbiology, COBS&H CCS Haryana Agricultural University Hisar India
| |
Collapse
|
5
|
Nickel (II), copper (II), and vanadyl (II) complexes with tridentate nicotinoyl hydrazone derivative functionalized as effective catalysts for epoxidation processes and as biological reagents. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Yılmaz ZK, Özdemir Ö, Aslim B, Suludere Z, Şahin E. A new bio-active asymmetric-Schiff base: synthesis and evaluation of calf thymus DNA interaction, topoisomerase IIα inhibition, in vitro antiproliferative activity, SEM analysis and molecular docking studies. J Biomol Struct Dyn 2022; 41:2804-2822. [PMID: 35179080 DOI: 10.1080/07391102.2022.2039297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this paper, the asymmetric-Schiff base 2-(4-(2-hydroxybenzylideneamino)benzylideneamino)benzoic acid (SB-2) was newly synthesized and characterized by various spectroscopic methods. The interaction of SB-2 with calf thymus DNA was investigated by UV-vis, fluorescence spectroscopy and molecular docking methods. It was determined that SB-2 effectively binds to DNA via the intercalation mode. DNA electrophoretic mobility experiments displayed that topoisomerase IIα could not cleave pBR322 plasmid DNA in the presence of SB-2, confirming that the Schiff base acts as a topo II suppressor. In the molecular docking studies, SB-2 was found to show an affinity for both the DNA-topoisomerase IIα complex and the DNA. In vitro antiproliferative activity of SB-2 was screened against HT-29 (colorectal) and HeLa (cervical) human tumor cell lines by MTT assay. SB-2 diminished the cell viability in a concentration- and incubation time-dependent manner. The ability of SB-2 to measure DNA damage in tumor cells was evaluated with cytokinesis-block micronucleus assay after incubation 24 h and 48 h. Light and scanning electron microscopy experiments of tumor cells demonstrated an incubation time-dependent increase in the proportion of apoptotic cells (nuclear condensation and apoptotic bodies) suggesting that autophagy and apoptosis play a role in the death of cells. Based on the obtained results, it may be considered that SB-2 is a candidate for DNA-targeting antitumor drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zehra Kübra Yılmaz
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Özlem Özdemir
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Belma Aslim
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Zekiye Suludere
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Egemen Şahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
7
|
Kirthan B, Prabhakara M, Bhojya naik H, Viswanath R, Amith Nayak P. Optoelectronic, photocatalytic and biological studies of mixed ligand Cd(II) complex and its fabricated CdO nanoparticles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Ma SX, Guo XL. Two transition metal phosphonate coordination polymers: application and nursing values on corneal disease during soft contact lenses usage. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1992428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Su-Xiang Ma
- Ophthalmology Department, The Second People's Hospital of Jinan, Jinan, Shandong, China
| | - Xiao-Ling Guo
- Community Development, Qilu Children’s Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
9
|
Tang Q, Hu J, Ding YJ, Zhang YF, Li HF, Xu M, Yang XC, Liang L, Li WG. Syntheses, structures and antimicrobial properties of complexes based on 2-hydroxybenzaldehyde-4-aminoantipyrine Schiff base. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1875449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Quan Tang
- Department of Chemistry, Bengbu Medical College, Bengbu, P. R. China
| | - Jing Hu
- Department of Chemistry, Bengbu Medical College, Bengbu, P. R. China
| | - Yi-Jie Ding
- Department of Chemistry, Bengbu Medical College, Bengbu, P. R. China
| | - Yi-Fan Zhang
- Department of Chemistry, Bengbu Medical College, Bengbu, P. R. China
| | - Hui-Fang Li
- Department of Chemistry, Bengbu Medical College, Bengbu, P. R. China
| | - Ming Xu
- Department of Chemistry, Bengbu Medical College, Bengbu, P. R. China
| | - Xin-Cheng Yang
- Department of Chemistry, Bengbu Medical College, Bengbu, P. R. China
| | - Lili Liang
- Department of Chemistry, Bengbu Medical College, Bengbu, P. R. China
| | - Wen-Ge Li
- Department of Chemistry, Bengbu Medical College, Bengbu, P. R. China
| |
Collapse
|
10
|
Roy S, Mohanty M, Miller RG, Patra SA, Lima S, Banerjee A, Metzler-Nolte N, Sinn E, Kaminsky W, Dinda R. Probing CO Generation through Metal-Assisted Alcohol Dehydrogenation in Metal-2-(arylazo)phenol Complexes Using Isotopic Labeling (Metal = Ru, Ir): Synthesis, Characterization, and Cytotoxicity Studies. Inorg Chem 2020; 59:15526-15540. [PMID: 32993294 DOI: 10.1021/acs.inorgchem.0c02563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The reaction of 2-{2-(benzo[1,3]dioxol-5-yl)- diazo}-4-methylphenol (HL) with [Ru(PPh3)3Cl2] in ethanol resulted in the carbonylated ruthenium complex [RuL(PPh3)2(CO)] (1), wherein metal-assisted decarbonylation via in situ ethanol dehydrogenation is observed. When the reaction was performed in acetonitrile, however, the complex [RuL(PPh3)2(CH3CN)] (2) was obtained as the main product, probably by trapping of a common intermediate through coordination of CH3CN to the Ru(II) center. The analogous reaction of HL with [Ir(PPh3)3Cl] in ethanol did not result in ethanol decarbonylation and instead gave the organoiridium hydride complex [IrL(PPh3)2(H)] (3). Unambiguous evidence for the generation of CO via ruthenium-assisted ethanol oxidation is provided by the synthesis of the 13C-labeled complex, [Ru(PPh3)2L(13CO)] (1A) using isotopically labeled ethanol, CH313CH2OH. To summarize all the evidence, a ruthenium-assisted mechanistic pathway for the decarbonylation and generation of alkane via alcohol dehydrogenation is proposed. In addition, the in vitro antiproliferative activity of complexes 1-3 was tested against human cervical (HeLa) and human colorectal adenocarcinoma (HT-29) cell lines. Complexes 1-3 showed impressive cytotoxicity against both HeLa (half-maximal inhibitory concentration (IC50) value of 3.84-4.22 μM) and HT-29 cancer cells (IC50 values between 3.3 and 4.5 μM). Moreover, the complexes were comparatively less toxic to noncancerous NIH-3T3 cells.
Collapse
Affiliation(s)
- Satabdi Roy
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Reece G Miller
- Department of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Nils Metzler-Nolte
- Department of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| | - Ekkehard Sinn
- Department of Chemistry, Western Michigan University, Kalamazoo 49008, Michigan, United States
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
11
|
Venugopal N, Krishnamurthy G, Bhojyanaik HS, Madhukar Naik M, Sunilkumar N. Synthesis, characterization, and biological activity of Cu(II) and Co(II) complexes of novel N 1,N 2-bis(4-methyl quinolin-2-yl)benzene-1,2-diamine: CuO and CoO nanoparticles derived from their metal complexes for photocatalytic activity. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1814337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- N. Venugopal
- Department of Chemistry, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India
| | - G. Krishnamurthy
- Department of Chemistry, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India
| | - H. S. Bhojyanaik
- Department of Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, Karnataka, India
| | - M. Madhukar Naik
- Department of Chemistry MVJ College of Engineering, Banglore-560067
| | - N. Sunilkumar
- Department of Chemistry, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India
| |
Collapse
|
12
|
Synthesis, Characterization, DFT Studies and Biological Activity of Ru(III), La(III) and Ce(III) Triphenylphosphine Complexes Containing 2-Aminothiazole and 2-Aminotriazole. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01492-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Wang X, Ling N, Zhang YW, Wang X, Yang HX. Synthesis, structure, antidiabetic and antioxidant properties of a new Co(II) complex with a flexible tripodal ligand. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Venugopal N, Krishnamurthy G, Bhojya Naik HS, Manohara JD. DNA Binding, Molecular Docking and Antimicrobial Evaluation of Novel Azo Dye Ligand and Their Metal Complexes. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01394-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|