1
|
Pozzetti L, Pinhammer MM, Asquith CRM. Medicinal chemistry applications of the Dimroth Rearrangement to the synthesis of biologically active compounds. Eur J Med Chem 2025; 289:117399. [PMID: 40024165 DOI: 10.1016/j.ejmech.2025.117399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
The Dimroth Rearrangement (DR) is an isomerization process involving the translocation of exo- and endocyclic nitrogen atoms in heterocyclic systems via a ring opening, rotation, and ring closure mechanism. Originally discovered over 120 years ago, the mechanistic occurrence of the DR on multiple heterocycles has been widely studied, and its application to the synthesis of biologically active compounds is well documented, albeit on some occasions not directly referenced. A surprisingly high number of drug discovery programs take advantage of the DR for the synthesis of heterocycle-containing compounds, including 4-aminopyrimidines and 4-anilinoquinazolines. Evidence of the flexibility and valuable potential of the DR can be found in the use of this reaction in the manufacture processes of several active pharmaceutical ingredients (APIs) on a commercial scale, allowing a reduction in the manufacturing costs and the environmental burden of the synthetic routes. The aim of this review is to outline the generality and broad applicability of the DR to the synthesis of biologically active compounds and highlight the opportunities to utilize this tool more widely within the medicinal chemistry toolbox.
Collapse
Affiliation(s)
- Luca Pozzetti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maja M Pinhammer
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Christopher R M Asquith
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
2
|
Diaconu D, Savu M, Ciobanu C, Mangalagiu V, Mangalagiu II. Current strategies in design and synthesis of antifungals hybrid and chimeric diazine derivatives. Bioorg Med Chem 2025; 119:118069. [PMID: 39818112 DOI: 10.1016/j.bmc.2025.118069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
In the last decades fungal infections became a major threat to human health having an unacceptably occurrence, a high rate of mortality and the number of patients at risk for these infections continue to increase every year. An effective, modern and very useful strategy in antifungal therapy is represented by the use of chimeric and hybrid drugs, most of them being with azaheterocycle skeleton. In this review, we present an overview from the last five years of the most representative achievements in the field of chimeric and hybrid diazine derivatives with antifungal properties. Within this work we emphasize the most relevant data concerning the synthesis, design, Structure Activity Relationships (SAR) correlations and antifungal activity of the main classes of diazine: 1,2-diazine (pyridazine), 1,3-diazine (pyrimidine), 1,4-diazine (pyrazine) and their fused derivatives.
Collapse
Affiliation(s)
- Dumitrela Diaconu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania; Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, RECENT-AIR Center, Bd. Carol 11, 700506 Iasi, Romania
| | - Marius Savu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania
| | - Catalina Ciobanu
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, CERNESIM Center, Bd. Carol 11, 700506 Iasi, Romania
| | - Violeta Mangalagiu
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, CERNESIM Center, Bd. Carol 11, 700506 Iasi, Romania; Stefan Cel Mare University of Suceava, Faculty of Food Engineering, 13 Universitatii Str., 720229 Suceava, Romania
| | - Ionel I Mangalagiu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania.
| |
Collapse
|
3
|
Manhas R, Rathore A, Havelikar U, Mahajan S, Gandhi SG, Mahapa A. Uncovering the potentiality of quinazoline derivatives against Pseudomonas aeruginosa with antimicrobial synergy and SAR analysis. J Antibiot (Tokyo) 2024; 77:365-381. [PMID: 38514856 DOI: 10.1038/s41429-024-00717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Antimicrobial resistance has emerged as a covert global health crisis, posing a significant threat to humanity. If left unaddressed, it is poised to become the foremost cause of mortality worldwide. Among the multitude of resistant bacterial pathogens, Pseudomonas aeruginosa, a Gram-negative, facultative bacterium, has been responsible for mild to deadly infections. It is now enlisted as a global critical priority pathogen by WHO. Urgent measures are required to combat this formidable pathogen, necessitating the development of novel anti-pseudomonal drugs. To confront this pressing issue, we conducted an extensive screening of 3561 compounds from the ChemDiv library, resulting in the discovery of potent anti-pseudomonal quinazoline derivatives. Among the identified compounds, IDD-8E has emerged as a lead molecule, exhibiting exceptional efficacy against P. aeruginosa while displaying no cytotoxicity. Moreover, IDD-8E demonstrated significant pseudomonal killing, disruption of pseudomonal biofilm and other anti-bacterial properties comparable to a well-known antibiotic rifampicin. Additionally, IDD-8E's synergy with different antibiotics further strengthens its potential as a powerful anti-pseudomonal agent. IDD-8E also exhibited significant antimicrobial efficacy against other ESKAPE pathogens. Moreover, we elucidated the Structure-Activity-Relationship (SAR) of IDD-8E targeting the essential WaaP protein in P. aeruginosa. Altogether, our findings emphasize the promise of IDD-8E as a clinical candidate for novel anti-pseudomonal drugs, offering hope in the battle against antibiotic resistance and its devastating impact on global health.
Collapse
Affiliation(s)
- Rakshit Manhas
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Arti Rathore
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ujwal Havelikar
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Shavi Mahajan
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Sumit G Gandhi
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Avisek Mahapa
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Zhao G, Zhang W, Fu X, Xie X, Bai S, Li X. Synthesis and Screening of Chemical Agents Targeting Viral Protein Genome-Linked Protein of Telosma Mosaic Virus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13645-13653. [PMID: 37676131 DOI: 10.1021/acs.jafc.3c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The viral protein genome-linked protein (VPg) of telosma mosaic virus (TeMV) plays an important role in viral reproduction. In this study, the expression conditions of TeMV VPg were explored. A series of novel benzenesulfonamide derivatives were synthesized. The binding sites of the target compounds and TeMV VPg were studied by molecular docking, and the interaction was verified by microscale thermophoresis. The study revealed that the optimal expression conditions for TeMV VPg were in Escherichia coli Rosetta with IPTG concentration of 0.8 mM and induction temperature of 25 °C. Compounds A4, A6, A9, A16, and A17 exhibited excellent binding affinity to TeMV VPg, with Kd values of 0.23, 0.034, 0.19, 0.086, and 0.22 μM, respectively. LYS 121 is the key amino acid site. Compounds A9 inhibited the expression of TeMV VPg in Nicotiana benthamiana. The results suggested that TeMV VPg is a potential antiviral target to screen anti-TeMV compounds.
Collapse
Affiliation(s)
- Guili Zhao
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wenjuan Zhang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China
| | - Xiaodong Fu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Song Bai
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Industry Polytechnic College, Guiyang 550008, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Zayed MF. Medicinal Chemistry of Quinazolines as Anticancer Agents Targeting Tyrosine Kinases. Sci Pharm 2023. [DOI: 10.3390/scipharm91020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Cancer is a large group of diseases that can affect any organ or body tissue due to the abnormal cellular growth with the unknown reasons. Many of the existing chemotherapeutic agents are highly toxic with a low level of selectivity. Additionally, they lead to development of therapeutic resistance. Hence, the development of targeted chemotherapeutic agents with low side effects and high selectivity is required for cancer treatment. Quinazoline is a vital scaffold well-known to be linked with several biological activities. The anticancer activity is one of the prominent biological activities of this scaffold. Several established anticancer quinazolines work by different mechanisms on the various molecular targets. The aim of this review is to present different features of medicinal chemistry as drug design, structure activity relationship, and mode of action of some targeted anticancer quinazoline derivatives. It gives comprehensive attention on the chemotherapeutic activity of quinazolines in the viewpoint of drug discovery and its development. This review provides panoramic view to the medicinal chemists for supporting their efforts to design and synthesize novel quinazolines as targeted chemotherapeutic agents.
Collapse
|
6
|
Romero AH, Aguilera E, Gotopo L, Charris J, Rodríguez N, Oviedo H, Dávila B, Cabrera G, Cerecetto H. Synthesis and Antitrypanosomal and Mechanistic Studies of a Series of 2-Arylquinazolin-4-hydrazines: A Hydrazine Moiety as a Selective, Safe, and Specific Pharmacophore to Design Antitrypanosomal Agents Targeting NO Release. ACS OMEGA 2022; 7:47225-47238. [PMID: 36570252 PMCID: PMC9773939 DOI: 10.1021/acsomega.2c06455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Nitric oxide (NO) represents a valuable target to design antitrypanosomal agents by its high toxicity against trypanosomatids and minimal side effects on host macrophages. The progress of NO-donors as antitrypanosomal has been restricted by the high toxicity of their agents, which usually is based on NO-heterocycles and metallic NO-complexes. Herein, we carried out the design of a new class of NO-donors based on the susceptibility of the hydrazine moiety connected to an electron-deficient ring to be reduced to the amine moiety with release of NO. Then, a series of novel 2-arylquinazolin-4-hydrazine, with the potential ability to disrupt the parasite folate metabolism, were synthesized. Their in vitro evaluation against Leishmania and Trypanosoma cruzi parasites and mechanistic aspects were investigated. The compounds displayed significant leishmanicidal activity, identifying three potential candidates, that is, 3b, 3c, and 3f, for further assays by their good antiamastigote activities against Leishmania braziliensis, low toxicity, non-mutagenicity, and good ADME profile. Against T. cruzi parasites, derivatives 3b, 3c, and 3e displayed interesting levels of activities and selectivities. Mechanistic studies revealed that the 2-arylquinazolin-4-hydrazines act as either antifolate or NO-donor agents. NMR, fluorescence, and theoretical studies supported the fact that the quinazolin-hydrazine decomposed easily in an oxidative environment via cleavage of the N-N bond to release the corresponding heterocyclic-amine and NO. Generation of NO from axenic parasites was confirmed by the Griess test. All the evidence showed the potential of hydrazine connected to the electron-deficient ring to design effective and safe NO-donors against trypanosomatids.
Collapse
Affiliation(s)
- Angel H. Romero
- Grupo
de Química Orgánica Medicinal, Instituto de Química
Biológica, Facultad de Ciencias, Universidad de la Republica, Iguá 4225, Montevideo 11400, Uruguay
- Laboratorio
de Ingeniería Genética, Instituto de Biomedicina, Facultad
de Medicina, Universidad Central de Venezuela, San Luis, Caracas 1073, Venezuela
| | - Elena Aguilera
- Grupo
de Química Orgánica Medicinal, Instituto de Química
Biológica, Facultad de Ciencias, Universidad de la Republica, Iguá 4225, Montevideo 11400, Uruguay
| | - Lourdes Gotopo
- Laboratorio
de Síntesis de Orgánica, Facultad de Ciencias, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1041-A, Venezuela
| | - Jaime Charris
- Laboratorio
de Síntesis de Medicamentos, Facultad de Farmacia, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1041-A, Venezuela
| | - Noris Rodríguez
- Laboratorio
de Ingeniería Genética, Instituto de Biomedicina, Facultad
de Medicina, Universidad Central de Venezuela, San Luis, Caracas 1073, Venezuela
| | - Henry Oviedo
- Laboratorio
de Ingeniería Genética, Instituto de Biomedicina, Facultad
de Medicina, Universidad Central de Venezuela, San Luis, Caracas 1073, Venezuela
| | - Belén Dávila
- Grupo
de Química Orgánica Medicinal, Instituto de Química
Biológica, Facultad de Ciencias, Universidad de la Republica, Iguá 4225, Montevideo 11400, Uruguay
| | - Gustavo Cabrera
- Laboratorio
de Síntesis de Orgánica, Facultad de Ciencias, Universidad Central de Venezuela, Los Chaguaramos, Caracas 1041-A, Venezuela
| | - Hugo Cerecetto
- Grupo
de Química Orgánica Medicinal, Instituto de Química
Biológica, Facultad de Ciencias, Universidad de la Republica, Iguá 4225, Montevideo 11400, Uruguay
- Área
de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de
Ciencias, Universidad de la Republica, Mataojo 2055, Montevideo 11400, Uruguay
| |
Collapse
|
7
|
Medicinal Chemistry of Quinazolines as Analgesic and Anti-Inflammatory Agents. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6060094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Quinazoline is an essential scaffold, known to be linked with various biological activities. Some of the prominent biological activities of this system are analgesic, anti-inflammatory, anti-hypertensive, anti-bacterial, anti-diabetic, anti-malarial, sedative–hypnotic, anti-histaminic, anti-cancer, anti-convulsant, anti-tubercular, and anti-viral activities. This diversity in the pharmacological response of the quinazoline system has encouraged medicinal chemists to study and discover this system and its multitude of potential against several biological activities. Many of these studies have successfully investigated the structure–activity relationship to explore the specific structural features of their biological targets. The developing understanding of quinazoline derivatives and their biological targets presents opportunities for the discovery of novel therapeutics. This review represents different aspects of medicinal chemistry, including drug design, structure–activity relationship, and the mode of action of some analgesic and anti-inflammatory quinazoline compounds. It pays comprehensive attention to the analgesic and anti-inflammatory activities of quinazolines from the viewpoint of drug discovery and its development.
Collapse
|
8
|
D’Souza PR, Kudva J, Kumar AS, Shetty AN. Experimental and Computational Studies of N-(4,6-Dimethylpyrimidin-2-yl)-4-[(quinazoline-4-yl)amino]-benzene-1-sulfonamide as an Effectual Corrosion Inhibitor for Mild Steel in Hydrochloric Acid. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221080140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Recent Advances on Quinazoline Derivatives: A Potential Bioactive Scaffold in Medicinal Chemistry. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5040073] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This paper intended to explore and discover recent therapeutic agents in the area of medicinal chemistry for the treatment of various diseases. Heterocyclic compounds represent an important group of biologically active compounds. In the last few years, heterocyclic compounds having quinazoline moiety have drawn immense attention owing to their significant biological activities. A diverse range of molecules having quinazoline moiety are reported to show a broad range of medicinal activities like antifungal, antiviral, antidiabetic, anticancer, anti-inflammatory, antibacterial, antioxidant and other activities. This study accelerates the designing process to generate a greater number of biologically active candidates.
Collapse
|
10
|
Ziyadi H, Baghali M, Heydari A. The synthesis and characterization of Fe 2O 3@SiO 2-SO 3H nanofibers as a novel magnetic core-shell catalyst for formamidine and formamide synthesis. Heliyon 2021; 7:e07165. [PMID: 34151037 PMCID: PMC8192820 DOI: 10.1016/j.heliyon.2021.e07165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022] Open
Abstract
Over the past several decades, the fabrication of novel ceramic nanofibers applicable in different areas has been a frequent focus of scientists around the world. Aiming to introduce novel ceramic core-shell nanofibers as a magnetic solid acid catalyst, Fe2O3@SiO2-SO3H magnetic nanofibers were prepared in this study using a modification of Fe2O3@SiO2 core-shell nanofibers with chlorosulfonic acid to increase the acidic properties of these ceramic nanofibers. The products were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscope (EDS), vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The prepared nanofibers were used as catalysts in formamide and formamidine synthesis. The treatment of aqueous formic acid using diverse amines with a catalytic amount of Fe2O3@SiO2-SO3H nanofibers as a reusable, magnetic and heterogeneous catalyst produced high yields of corresponding formamides at room temperature. Likewise, the reaction of diverse amines with triethyl orthoformate led to the synthesis of formamidine derivatives in excellent yields using this novel catalyst. The catalytic system was able to be recovered and reused at least five times without any catalytic activity loss. Thus, novel core-shell nanofibers can act as efficient solid acid catalysts in different organic reactions capable of being reused several times due to their easy separation by applying magnet.
Collapse
Affiliation(s)
- Hakimeh Ziyadi
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Baghali
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Akbar Heydari
- Chemistry Department, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Su S, Chen M, Li Q, Wang Y, Chen S, Sun N, Xie C, Huai Z, Huang Y, Xue W. Novel penta-1,4-diene-3-one derivatives containing quinazoline and oxime ether fragments: Design, synthesis and bioactivity. Bioorg Med Chem 2021; 32:115999. [PMID: 33444848 DOI: 10.1016/j.bmc.2021.115999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
A series of novel penta-1,4-diene-3-one derivatives containing quinazoline and oxime ether moieties were designed and synthesized. Their anticancer activities were evaluated by MTT assay, the results showed that most compounds exhibited extremely inhibitory effects against hepatoma SMMC-7721 cells. In particular, compounds Q2 and Q8 displayed the more potent inhibitory activity with IC50 values of 0.64 and 0.63 μM, which were better than that of gemcitabine (1.40 μM). Further mechanism studies indicated that compounds Q2, Q8, Q13 and Q19 could control the migration of SMMC-7721 cells effectively, and inhibit the proliferation of cancer cells by inhibiting the DNA replication. Western-blot results showed that compounds Q2 and Q8 induced irreversible apoptosis of SMMC-7721 cells by regulating the expression level of apoptose-related proteins. Those studies demonstrated that the penta-1,4-diene-3-one derivatives containing quinazoline and oxime ether fragments merited further research as potential anticancer agents.
Collapse
Affiliation(s)
- Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qin Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yihui Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shuai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Nan Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chengwei Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ziyou Huai
- School of Life Science, Bengbu Medical College, Anhui, Bengbu 233030, China
| | - Yinjiu Huang
- School of Life Science, Bengbu Medical College, Anhui, Bengbu 233030, China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|