1
|
Erbaş A, Dikim S, Arslan F, Bodur OC, Arslan S, Özdemir F, Sarı N. Schiff Bases From 4-Aminoantipyrine: Investigation of Their In Silico, Antimicrobial, and Anticancer Effects and Their Use in Glucose Biosensor Design. Bioinorg Chem Appl 2025; 2025:2786064. [PMID: 40201410 PMCID: PMC11978478 DOI: 10.1155/bca/2786064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/01/2025] [Indexed: 04/10/2025] Open
Abstract
Five new Schiff bases from 4-aminoantipyrine were synthesized, characterized, and evaluated for their antimicrobial and DNA cleavage activities, and drug similarity properties and cytotoxicity prediction using in silico analysis. All Schiff bases had good antibacterial and antifungal activities. All compounds showed self-activating DNA cleavage ability in the absence of any reductant or oxidant at low concentrations. Modified carbon paste electrodes were prepared with all Schiff bases, and a glucose biosensor was designed. Schiff base coded (4AA-Fc) was found to have the best sensitivity to H2O2. It was observed that the prepared biosensor has a working range at low concentrations (1.0 × 10-7-1.0 × 10-6 M (R 2 = 1.0)) and a low detection limit (1.0 × 10-8 M). At the same time, 4AA-Fc was found to be a potent compound for bactericidal and fungicidal effect, killing pathogens. Thus, it could be used for the development of a resistant biosensor in external environment. It also showed a complete DNA degradation. In silico ADME analysis and cell line cytotoxicity studies found these new Schiff bases to have favorable drug-like properties, indicating potential for the development of therapeutic drugs. In particular, the compounds were not a P-gp substrate. Thus, they could be a potential anticancer agent. The present study may be useful for further scientific research in the field of the design, synthesis, and biological studies of bioactive substances.
Collapse
Affiliation(s)
- Aşkın Erbaş
- Graduate School of Natural and Applied Sciences, Gazi University, Ankara, Türkiye
| | - Selinsu Dikim
- Department of Chemistry, Faculty of Arts and Science, Kutahya Dumlupinar University, Kutahya, Türkiye
| | - Fatma Arslan
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| | - Onur Can Bodur
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| | - Seza Arslan
- Department of Biology, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Fatma Özdemir
- Department of Biology, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Nurşen Sarı
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| |
Collapse
|
2
|
Galaz T, Ottone C, Rodríguez-Núñez K, Bernal C. Evaluation of the operational conditions of the glucose oxidase and catalase multienzymatic system through enzyme co-immobilization on amino hierarchical porous silica. Carbohydr Res 2024; 538:109096. [PMID: 38531187 DOI: 10.1016/j.carres.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Hexaric acids have attracted attention lately because they are platform chemicals for synthesizing pharmaceuticals. In particular, gluconic acid is one of the most studied because it is readily available in nature. In this work, operational conditions like temperature and pH were evaluated for the enzymatic production of gluconic acid. For this purpose, glucose oxidase (GOx) and catalase (CAT) were individually immobilized and co-immobilized using amino-silica as support. The catalytic performance of the enzymes both as separate biocatalysts (GOx or CAT) and as an enzymatic complex (GOx-CAT) was assessed in terms of enzymatic activity and stability at temperatures 45 °C and 50 °C and pH 6 to 8. The results show that CAT is a key enzyme for gluconic acid production as it prevents GOx from being inhibited by H2O2. However, CAT was found to be less stable than GOx. Therefore, different GOx to CAT enzymatic ratios were studied, and a ratio of 1-3 was determined to be the best. The highest glucose conversion conditions were 45 °C and pH 7.0 for 24 h. Regarding the biocatalyst reuse, GOx-CAT retained more than 70% of its activity after 6 reaction cycles. These results contribute to further knowledge and application of oxidases for hexaric acid production and shed greater light on the role of the glucose oxidase/catalase pair in better catalytic performance. Both enzymes were immobilized in one pot, which is relevant for their potential use in industry; an enzyme system was obtained in a single step.
Collapse
Affiliation(s)
- Tamara Galaz
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile.
| | - Karen Rodríguez-Núñez
- Laboratorio de Catálisis y Biocatálisis, Departamento de Química, Facultad de Ciencias, Universidad de La Serena, Casilla 599, Benavente 980, La Serena, 1720236, Chile
| | - Claudia Bernal
- Laboratorio de Catálisis y Biocatálisis, Departamento de Química, Facultad de Ciencias, Universidad de La Serena, Casilla 599, Benavente 980, La Serena, 1720236, Chile.
| |
Collapse
|
3
|
Altowyan MS, Soliman SM, Lasri J, Eltayeb NE, Haukka M, Barakat A, El-Faham A. A New Pt(II) Complex with Anionic s-Triazine Based NNO-Donor Ligand: Synthesis, X-ray Structure, Hirshfeld Analysis and DFT Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051628. [PMID: 35268727 PMCID: PMC8911880 DOI: 10.3390/molecules27051628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022]
Abstract
The reaction of PtCl2 with s-triazine-type ligand (HTriaz) (1:1) in acetone under heating afforded a new [Pt(Triaz)Cl] complex. Single-crystal X-ray diffraction analysis showed that the ligand (HTriaz) is an NNO tridentate chelate via two N-atoms from the s-triazine and hydrazone moieties and one oxygen from the deprotonated phenolic OH. The coordination environment of the Pt(II) is completed by one Cl−1 ion trans to the Pt-N(hydrazone). Hirshfeld surface analysis showed that the most dominant interactions are the H···H, H···C and O···H intermolecular contacts. These interactions contributed by 60.9, 11.2 and 8.3% from the whole fingerprint area, respectively. Other minor contributions from the Cl···H, C···N, N···H and C···C contacts were also detected. Among these interactions, the most significant contacts are the O···H, H···C and H···H interactions. The amounts of the electron transfer from the ligand groups to Pt(II) metal center were predicted using NBO calculations. Additionally, the electronic spectra were assigned based on the TD-DFT calculations.
Collapse
Affiliation(s)
- Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt;
- Correspondence: (S.M.S.); (J.L.); (A.B.)
| | - Jamal Lasri
- Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (S.M.S.); (J.L.); (A.B.)
| | - Naser E. Eltayeb
- Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (S.M.S.); (J.L.); (A.B.)
| | - Ayman El-Faham
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt;
| |
Collapse
|
4
|
Nasir Z, Ali A, Alam MF, Shoeb M, Nusrat Jahan S. Immobilization of GOx Enzyme on SiO 2-Coated Ni-Co Ferrite Nanocomposites as Magnetic Support and Their Antimicrobial and Photocatalytic Activities. ACS OMEGA 2021; 6:33554-33567. [PMID: 34926904 PMCID: PMC8675013 DOI: 10.1021/acsomega.1c04360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/18/2021] [Indexed: 05/11/2023]
Abstract
The present study used a sol-gel auto-combustion approach to make silica (SiO2)-coated Ni-Co ferrite nanocomposites that would be used as a platform for enzyme immobilization. Using glutaraldehyde as a coupling agent, glucose oxidase (GOx) was covalently immobilized on this magnetic substrate. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and fourier transform infrared spectroscopy (FTIR) was used to determine the structural analysis and morphology of Ni-Co ferrite/SiO2 nanocomposites. FTIR spectra confirmed the binding of GOx to Ni-Co ferrite/SiO2 nanocomposites, with a loading efficiency of around 85%. At alkaline pH and higher temperature, the immobilized GOx enzyme exhibited increased catalytic activity. After 10 times of reuses, it still had 69% catalytic activity. Overall, the immobilized GOx displayed higher operational stability than the free enzyme under severe circumstances and was easily recovered by magnetic separation. With increased doping concentration of the nanocomposites, the photocatalytic activity was assessed using a degradation process in the presence of methylene blue dye under UV light irradiation, which revealed that the surface area of the nanocomposites with increased doping concentration played a significant role in improving photocatalytic activity. The antibacterial activity of Ni-Co ferrite/SiO2 nanocomposites was assessed using the agar well diffusion method against Escherichia coli, a gram-negative bacteria (ATCC 25922). Consequently, it was revealed that doping of Ni2+ and Co2+ in Fe2O4/SiO2 nanocomposites at varied concentrations improved their antibacterial properties.
Collapse
Affiliation(s)
- Zeba Nasir
- Department
of Chemistry, Aligarh Muslim University, Aligarh, UP 202 002, India
| | - Abad Ali
- Department
of Chemistry, Aligarh Muslim University, Aligarh, UP 202 002, India
| | - Md. Fazle Alam
- Interdisciplinary
Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202 002, India
- Key
Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, People’s Republic
of China
| | - Mohd Shoeb
- Department
of Applied Chemistry, Z.H. College of Engg. & Tech., Aligarh Muslim University, Aligarh, UP 202
002, India
| | - Shaikh Nusrat Jahan
- Department
of Zoology, G.M. Momin Women’s College, University of Mumbai, Bhiwandi, Mumbai 421302, India
| |
Collapse
|