1
|
Li Y, Cao J, Wang C, Qiao Y, Gao J, Zhang X, Wang L. Design of "Off-On-Off" fluorescence sensors for Heparin detection by precise modulation of molecular structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124630. [PMID: 38865888 DOI: 10.1016/j.saa.2024.124630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
In this strategy, the fluorescence sensor Nap-Co-T1 employing the fluorescence resonance energy transfer (FRET) mechanism was designed and synthesized to have an efficient response to Heparin, and the FRET mechanism was explored for different excitation-emission wavelengths with different distances between the energy acceptor and the energy donor (comparing with fluorescence sensor Nap-TPA-T2). Upon the addition of Heparin, the fluorescence emission of Nap-Co-T1 was turned on at 565 nm, and the fluorescence color changed of the solution from colorless to bright yellow. The limit of detection (LOD) was as low as 0.04 μg/mL. With the addition of antagonistic protamine (PRTM) to the sensor complex with Heparin, the fluorescence emission was turned off to a certain extent, and the reversibility of the "off-on-off" system was maintained for five cycles or more. In addition, Nap-Co-T1 provides rapid and sensitive detection of Heparin in human serum albumin solution and artificial urine and is highly sensitive to environmental viscosity.
Collapse
Affiliation(s)
- Yanan Li
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China
| | - Jian Cao
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China.
| | - Chuanxiao Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China
| | - Yiyi Qiao
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China
| | - Jiayu Gao
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China
| | - Xiao Zhang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China
| | - Le Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, PR China
| |
Collapse
|
2
|
Du X, Zhang Y, Xu D. A 1,8-naphthimide-based Fluorescent Probe for Analyzing DMF/H 2O Composition. J Fluoresc 2024; 34:169-178. [PMID: 37166613 DOI: 10.1007/s10895-023-03251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
A novel 1,8-naphthalimide fluorescent probe (BNAS) containing 2-thiopheneethylamine moiety was designed and synthesized for analyzing the composition of N,N-dimethylformamide (DMF)/deionized water (H2O) mixtures. With the increase of DMF content, the fluorescence of the system was enhanced from dark to bright yellow-green. Taking 15% (volume) DMF content as the dividing point, the fluorescence intensity of the system at 535 nm showed two good linear relationships with the DMF content 1-15% and 15-99%, based on which the composition of the DMF/H2O mixtures with a volume ratio of 1/99-99/1 could be quickly and efficiently analyzed with high selectivity and sensitivity. BNAS can be applied in real sample assay and further be loaded onto filter paper to make a portable sensor. The mechanism of BNAS response to DMF/H2O composition was also explored.
Collapse
Affiliation(s)
- Xinhao Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yupin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Dongmei Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Wu Y, Sun D, Han X, Zhao Z, Liang F, Liu S. Synthesis of Naphthalimide Derivatives and Their Luminescence upon Complexation with Cucurbit[ n]uril Hosts. J Org Chem 2023; 88:12376-12384. [PMID: 37610314 DOI: 10.1021/acs.joc.3c01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A series of naphthalimide derivatives are synthesized and their binding behavior upon complexation with cucurbit[n]urils (CB[n]s) has been investigated. With a heavy atom (bromine) on the naphthalimide core, 4-bromo-1,8-naphthalimide derivatives 1-4 show short room-temperature phosphorescence (RTP) lifetimes with low quantum yields. Their RTP properties are significantly enhanced in the presence of CB[8] or CB[10] both in aqueous solution and solid state owing to the efficient suppression of nonradiative decay and isolation of quenching factors by the rigid cavity of CB[n]. Without the bromine atom, 1,8-naphthalimide derivatives 5 and 6 show strong excimer emission upon complexation with CB[10] accompanied by fluorescence transition from blue to cyan. The fluorescence colors of 4-(dimethylamino)-1,8-naphthalimide derivatives 7 and 8 change from blue to white to yellow with the addition of CB[n]. This host-guest complexation strategy to modulate the luminescence of the luminophore would further broaden the application of luminescent materials.
Collapse
Affiliation(s)
- Yong Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Dongdong Sun
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xie Han
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Zhiyong Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Feng Liang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
4
|
Haiya S, Rong S, Juan S, Jinrui G, Ruofei L, Yuchen Z, Dongzhi L, Zhiqi L, Jinhong Z, Yinbang Z, Junfeng N, Shengli L. Donor-Acceptor structured phenylmethylene pyridineacetonitrile derivative with aggregation-induced emission characteristics: photophysical, mechanofluorochromic and electroluminescent properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Novel high-quantum-yield polydiacetylene conjugated AIE micelles for amplified fluorescence signaling and photodynamic therapy. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|