1
|
Hashish SA, Kishar EA, Ahmed DA, Ragei SM, Ebrahim AAM. Development of moringa seed powder-modified slag geopolymers for enhanced mechanical properties and effective dye removal. Sci Rep 2025; 15:9017. [PMID: 40089480 PMCID: PMC11910593 DOI: 10.1038/s41598-025-91091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/18/2025] [Indexed: 03/17/2025] Open
Abstract
Crystal violet (CV), a widely used dye in paints and textiles, poses a significant environmental threat due to its non-biodegradable nature. A modified slag-based geopolymer has been developed to address this issue by incorporating raw moringa seed powder (MSP), an agricultural waste. The geopolymers (SM1, SM2, and SM3) were created by adding different percentages of MSP (0.2%, 0.6%, and 1% by weight) to ground granulated blast furnace slag (GGBFS), using sodium silicate and 10 M sodium hydroxide as alkali activators. This combination enhances the geopolymer's mechanical and adsorbent properties, making it more effective for CV removal. The geopolymer composites were analyzed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Their mechanical properties were evaluated by conducting compressive strength and total porosity tests. Pore structure analysis was performed using nitrogen adsorption and desorption techniques, and the point of zero charges was determined. Additionally, batch experiments were carried out to investigate the adsorption of CV dye, employing two isotherm models and kinetic models for analysis. The SM1 mix, which is a modified slag-based geopolymer containing 0.2% MSP, exhibited the highest compressive strength at 73 MPa after 180 days, representing a 25.8% improvement compared to the control mix (100% slag). Furthermore, modified geopolymer mixes showed greater adsorption activity toward crystal violet compared to the control mix, with the SM3 mix achieving an adsorption capacity of up to 322.58 mg/g. The study demonstrates that adding MSP to slag-based geopolymer enhances mechanical strength and adsorption capacity. This indicates a positive impact on the composite's surface properties and highlights the environmental benefits of utilizing industrial and agricultural waste in wastewater treatment.
Collapse
Affiliation(s)
- Soher A Hashish
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt.
| | - Essam A Kishar
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Doaa A Ahmed
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Sheren M Ragei
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Aya Allah M Ebrahim
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| |
Collapse
|
2
|
Banza M, Seodigeng T, Linda S, Christian MM, Owona S, Musampa P. Batch and continuous fixed bed adsorption of copper (II) from acid mine drainage (AMD) using green and recyclable adsorbent from cellulose microcrystals (CMCs). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024:1-11. [PMID: 39558634 DOI: 10.1080/10934529.2024.2429284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
The CMCs are viable materials for applications in industry and process innovation for removing heavy metal ions since they may be used in static and dynamic adsorption processes. It is necessary to develop simple, low-cost water treatment methods that use organic, biodegradable polymers such as nanomaterial-modified cellulose microcrystals. The column technique was used to investigate the effects of operational parameters such as pH, bed depth, concentration and flow rate. The input concentrations of 20, 40, 80 and 120 mg L-1, feed flow rates of 5, 10, 15 and 20 mL min-1, and bed heights of 5, 7.5, 10 and 12.5 cm. Experimental findings showed that the adsorption capacity decreased with increasing flow rate and increased with bed depth and input concentration, which were among the breakthrough parameters evaluated. The optimum adsorption capacity of 258.09 ± 0.96 mg g-1 was found to be achieved with an ideal pH of 6, an initial concentration of 200 mg L-1, a contact period of 300 min, and a dosage of 5 g/200 mL. The Langmuir model best fits the adsorption of indigo carmine, whereas the pseudo-second-order model, which governs the adsorption mechanism, may be described by physisorption combined with chemisorption. From a thermodynamic perspective, the adsorption was exothermic and spontaneous. In continuous adsorption, the Yoon-Nelson and Thomas models provided a good match for the hole curve, whereas the Bohart-Adams model fitted the breakthrough curve's initial portion ((Ct/C0) <0.5) perfectly. A three-dimensional adsorbent that has been chemically modified. The chemically modified CMCs adsorbent was characterized using FTIR, SEM and TGA.
Collapse
Affiliation(s)
- Musamba Banza
- Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Tumisang Seodigeng
- Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Sibali Linda
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA, Florida, Roodepoort, South Africa
| | - Mwabanua Mutabi Christian
- Faculty of Science, Department of Geology, University of Lubumbashi, Lubumbashi, Democratic Republic of Congo
| | - Sebastien Owona
- Faculty of Science, Department of Earth Science, University of Douala, Douala, Cameroun
| | - Papy Musampa
- Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
| |
Collapse
|
3
|
Yadav M, Singh N, Annu, Khan SA, Raorane CJ, Shin DK. Recent Advances in Utilizing Lignocellulosic Biomass Materials as Adsorbents for Textile Dye Removal: A Comprehensive Review. Polymers (Basel) 2024; 16:2417. [PMID: 39274050 PMCID: PMC11397348 DOI: 10.3390/polym16172417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
This review embarks on a comprehensive journey, exploring the application of lignocellulosic biomass materials as highly effective adsorbents for the removal of textile dyes (cationic and anionic dyes) from wastewater. A literature review and analysis were conducted to identify existing gaps in previous research on the use of lignocellulosic biomass for dye removal. This study investigates the factors and challenges associated with dye removal methods and signifies their uses. The study delves into the pivotal role of several parameters influencing adsorption, such as contact time, pH, concentration, and temperature. It then critically examines the adsorption isotherms, unveiling the equilibrium relationship between adsorbent and dye and shedding light on the mechanisms of their interaction. The adsorption process kinetics are thoroughly investigated, and a detailed examination of the adsorbed rate of dye molecules onto lignocellulosic biomass materials is carried out. This includes a lively discussion of the pseudo-first, pseudo-second, and intra-particle diffusion models. The thermodynamic aspects of the adsorption process are also addressed, elucidating the feasibility and spontaneity of the removal process under various temperature conditions. The paper then dives into desorption studies, providing insights into the regeneration potential of lignocellulosic biomass materials for sustainable reusability. The environmental impact and cost-effectiveness of employing lignocellulosic biomass materials in textiles including Congo Red, Reactive Black 5, Direct Yellow 12, Crystal Violet, Malachite Green, Acid Yellow 99, and others dyes from wastewater treatment are discussed, emphasizing the significance of eco-friendly solutions. In summary, this review brings together a wealth of diverse studies and findings to present a comprehensive overview of lignocellulosic biomass materials as adsorbents for textile cationic and anionic dye removal, encompassing various aspects from influential parameters to kinetics, adsorption isotherms, desorption, and thermodynamics studies. Its scope and other considerations are also discussed along with its benefits. The collective knowledge synthesized in this paper is intended to contribute to the advancement of sustainable and efficient water treatment technologies in the textile industry.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nagender Singh
- Department of Fashion and Apparel Engineering, The Technological Institute of Textile and Sciences, Bhiwani 127021, India
| | - Annu
- Materials Laboratory, School of Mechanical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Suhail Ayoub Khan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
- IAMFE, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | | | - Dong Kil Shin
- Materials Laboratory, School of Mechanical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Kuśmierek K, Świątkowski A, Wierzbicka E, Legocka I. Modified Halloysite as an Adsorbent for the Removal of Cu(II) Ions and Reactive Red 120 Dye from Aqueous Solutions. Molecules 2024; 29:3099. [PMID: 38999051 PMCID: PMC11243603 DOI: 10.3390/molecules29133099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
The adsorption of copper ions and Reactive Red 120 azo dye (RR-120) as models of water pollutants on unmodified halloysite (H-NM), as well as halloysites modified with sulfuric acid (H-SA) and (3-aminopropyl)triethoxysilane (H-APTES), was investigated. The results showed that adsorption of both the adsorbates was pH-dependent and increased with the increase in halloysite dosage. The adsorption kinetics were evaluated and the results demonstrated that the adsorption followed the pseudo-second-order model. The adsorption isotherms of Cu(II) ions and RR-120 dye on the halloysites were described satisfactorily by the Langmuir model. The maximum adsorption capacities for the Cu(II) ions were 0.169, 0.236, and 0.507 mmol/g, respectively, for H-NM, H-SA, and H-APTES indicating that the NH2-functionalization rather than the surface area of the adsorbents was responsible for the enhanced adsorption. The adsorption capacities for RR-120 dye were found to be 9.64 μmol/g for H-NM, 75.76 μmol/g for H-SA, and 29.33 μmol/g for H-APTES. The results demonstrated that APTES-functionalization and sulfuric acid activation are promising modifications, and both modified halloysites have good application potential for heavy metals as well as for azo dye removal.
Collapse
Affiliation(s)
- Krzysztof Kuśmierek
- Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland;
| | - Andrzej Świątkowski
- Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland;
| | - Ewa Wierzbicka
- Department of Polymer Technology and Processing, Łukasiewicz-Industrial Chemistry Institute, 01-793 Warsaw, Poland; (E.W.); (I.L.)
| | - Izabella Legocka
- Department of Polymer Technology and Processing, Łukasiewicz-Industrial Chemistry Institute, 01-793 Warsaw, Poland; (E.W.); (I.L.)
| |
Collapse
|
5
|
Claude BJ, Onyango MS. Predictive modeling of copper (II) adsorption from aqueous solutions by sawdust: a comparative analysis of adaptive neuro-fuzzy interference system (ANFIS) and artificial neural network (ANN) approaches. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024:1-8. [PMID: 38613163 DOI: 10.1080/10934529.2024.2339775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Heavy metal ions are considered to be the most prevalent and toxic water contaminants. The objective of thois work was to investigate the effectiveness of employing the adsorption technique in a laboratory-size reactor to remove copper (II) ions from an aqueous medium. An adaptive neuro-fuzzy inference system (ANFIS) and a feed-forward artificial neural network (ANN) were used in this study. Four operational factors were chosen to examine their influence on the adsorption study: pH, contact duration, initial Cu (II) ions concentration, and adsorbent dosage. Using sawdust from wood, prediction models of copper (II) ions adsorption were optimized, created, and developed using the ANN and ANFIS models for tests. The result indicates that the determination coefficient for copper (II) metal ions in the training dataset was 0.987. Additionally, the ANFIS model's R2 value for both pollutants was 0.992. The findings demonstrate that the models presented a promising predictive approach that can be applied to successfully and accurately anticipate the simultaneous elimination of copper (II) and dye from the aqueous solution.
Collapse
Affiliation(s)
- Banza Jean Claude
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa
| | - Maurice Stephane Onyango
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
6
|
Heravi M, Srivastava V, Ahmadpour A, Zeynali V, Sillanpää M. The effect of the number of SO 3- groups on the adsorption of anionic dyes by the synthesized hydroxyapatite/Mg-Al LDH nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17426-17447. [PMID: 38337120 DOI: 10.1007/s11356-024-32192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
In this study, a new nanocomposite of hydroxyapatite (HA)/Mg-Al layered double hydroxide (LDH) was successfully formed via a facile co-precipitation method and applied to adsorb three anionic dyes of alizarin red S (ARS), Congo red (CR), and reactive red 120 (RR120) differing in the number of SO3- groups from aqueous solution. Based on a combination of characterization analysis and adsorption experiments, HA/Mg-Al LDH nanocomposite showed better adsorption performance than HA and Mg-Al LDH. Using XRD and TEM analyses, the crystallinity and the presence of nanoparticles were confirmed. According to the SEM investigation, the Mg-Al LDH layers in the nanocomposite structure were delaminated, while HA nanorods were formed at the surface of Mg-Al LDH nanoparticles. The higher BET surface area of the novel HA/Mg-Al LDH nanocomposite compared to HA and Mg-Al LDH provided its superior adsorption performance. Considering an effective amount of adsorbent dosage, pH 5 was selected as the optimum pH for each of the three dye solutions. According to the results from the study of contact time and initial concentration, the pseudo-second-order kinetic (R2 = 0.9987, 0.9951, and 0.9922) and Langmuir isotherm (R2 = 0.9873, 0.9956, and 0.9727) best fitted the data for ARS, CR, and RR120, respectively. Anionic dyes with different numbers of SO3- groups demonstrated distinct adsorption mechanisms for HA and Mg-Al LDH nanoparticles, indicating that the adsorption capacity is influenced by the number of SO3- groups, with HA/Mg-Al LDH nanocomposite offering superior performance toward dyes with higher numbers of SO3- groups. Furthermore, ΔH° less than 40 kJ/mol, positive ΔS°, and negative ΔG° accompanied by the mechanism clarifying show physical spontaneous adsorption without an external source of energy and increase the randomness of the process during the adsorption, respectively. Finally, the regeneration study demonstrated that the nanocomposite could be utilized for multiple adsorption-desorption cycles, proposing the HA/Mg-Al LDH as an economically and environmentally friendly adsorbent in the adsorption of anionic dyes in water treatment processes.
Collapse
Affiliation(s)
- Maliheh Heravi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Varsha Srivastava
- Department Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, 90014, Oulu, Finland
| | - Ali Ahmadpour
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
- Industrial Catalysts/Adsorbents and Environment (ICAE) Lab, Oil and Gas Research Institute, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Vahid Zeynali
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093, Kuwait
- Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
- School of Technology, Woxsen University, Hyderabad, Telangana, India
| |
Collapse
|
7
|
Comet Manesa K, Dyosi Z. Review on Moringa oleifera, a green adsorbent for contaminants removal: characterization, prediction, modelling and optimization using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 58:1014-1027. [PMID: 38146218 DOI: 10.1080/10934529.2023.2291977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 12/27/2023]
Abstract
Moringa oleifera utilization in water treatment to eliminate emerging pollutants such as heavy metal ions, pesticides, pharmaceuticals, and pigments has been extensively evaluated. The efficacy of Moringa oleifera biosorbent has been investigated in diverse research work using various techniques, including its adsorption capacity kinetic, thermodynamic evaluation, adsorbent modifications, and mechanism behind the adsorption process. The Langmuir isotherm provided the most remarkable experimental data fit for batch adsorption investigations, whereas the best fit was obtained with the pseudo-second order kinetic model. Furthermore, only a few papers that combined batch adsorption with fixed-bed column investigations were examined. In the latter articles, the scientists modified the adsorbent to increase the material's adsorption capacity as determined by analytical methods, including IR spectroscopy, scanning electronic microscope (SEM), and X-ray diffraction (XRD). However, the raw material can show appreciable adsorption capacity values, proving moringa's potency as a biosorbent. Hydrogen bonds, electrostatic interaction, and van der Waals forces were the main processes in the found and reported adsorbent-adsorbate interactions. These mechanisms could change depending on the physiochemical nature of adsorption. Although frequently employed for heavy metal ions and dye adsorption, Moringa oleifera can still be explored in pesticide and medication adsorption investigations due to the few publications in this comprehensive review. This study, therefore, examined different Adsorbents from the Moringa oleifera plant, as well as parameters and models for enhancing the adsorption process.
Collapse
Affiliation(s)
| | - Zolani Dyosi
- Knowledge Advancement and Support, National Research Foundation, Pretoria, South Africa
| |
Collapse
|
8
|
Zhao C, Li H, Gao C, Tian H, Guo Y, Liu G, Li Y, Liu D, Sun B. Moringa oleifera leaf polysaccharide regulates fecal microbiota and colonic transcriptome in calves. Int J Biol Macromol 2023; 253:127108. [PMID: 37776927 DOI: 10.1016/j.ijbiomac.2023.127108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
This study investigated the effects of Moringa oleifera polysaccharide on growth performance indicators, serum biochemical indicators, immune organ indicators, colonic morphology, colonic microbiomics and colonic transcriptomics in newborn calves. 21 newborn calves were randomly divided into three groups of 7 calves per treatment group: control group (no Moringa oleifera polysaccharide addition); low-dose group (Moringa oleifera polysaccharide 0.5 g/kg); and high-dose group (Moringa oleifera polysaccharide 1 g/kg). This trial used gavage to feed MOP to calves. The test lasted 8 weeks. Calves were humanely electroshocked on the last day of the trial and slaughtered afterwards. Thymus, spleen, blood and colonic contents were collected for further testing. The results of this trial showed that MOP significantly increased the body weight of newborn calves and reduced the rate of calf diarrhea, thus promoting calf growth. Fecal scores showed a linear decrease with the addition of MOP. In terms of serum biochemistry, feeding MOP significantly increased serum ALB levels in a linear fashion. In terms of serum antioxidants, feeding MOP linearly increased CAT and T-AOC levels and decreased MDA concentrations, and in terms of serum immunity, feeding MOP linearly increased IgA, IgG, and IgM levels. At the same time, MOP regulated the abundance of Firmicutes and Bacteroidetes in the intestinal tract of calves, which reduced the occurrence of diarrhea. In addition, moringa polysaccharide could regulate genes related to inflammatory signaling pathways such as MAPK signaling pathway, TGF-beta signaling pathway, PI3K-Akt signaling pathway and TNF signaling pathway in calves' intestine to reduce the occurrence of intestinal inflammation. In conclusion, MOP can be used as a novel ruminant additive for the prevention of enteritis in calves.
Collapse
Affiliation(s)
- Chao Zhao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hangfan Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chongya Gao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hanchen Tian
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Du Z, Yang F, Fang J, Yamasaki S, Oya T, Nguluve D, Kumagai H, Cai Y. Silage preparation and sustainable livestock production of natural woody plant. FRONTIERS IN PLANT SCIENCE 2023; 14:1253178. [PMID: 37746011 PMCID: PMC10514673 DOI: 10.3389/fpls.2023.1253178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
As the global population increases and the economy grows rapidly, the demand for livestock products such as meat, egg and milk continue to increase. The shortage of feed in livestock production is a worldwide problem restricting the development of the animal industry. Natural woody plants are widely distributed and have a huge biomass yield. The fresh leaves and branches of some woody plants are rich in nutrients such as proteins, amino acids, vitamins and minerals and can be used to produce storage feed such as silage for livestock. Therefore, the development and utilization of natural woody plants for clean fermented feed is important for the sustainable production of livestock product. This paper presents a comprehensive review of the research progress, current status and development prospects of forageable natural woody plant feed resources. The nutritional composition and uses of natural woody plants, the main factors affecting the fermentation of woody plant silage and the interaction mechanism between microbial co-occurrence network and secondary metabolite are reviewed. Various preparation technologies for clean fermentation of woody plant silage were summarized comprehensively, which provided a sustainable production mode for improving the production efficiency of livestock and producing high-quality livestock product. Therefore, woody plants play an increasingly important role as a potential natural feed resource in alleviating feed shortage and promoting sustainable development of livestock product.
Collapse
Affiliation(s)
- Zhumei Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Crop, Livestock, and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Fuyu Yang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jiachen Fang
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Seishi Yamasaki
- Crop, Livestock, and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Tetsuji Oya
- Crop, Livestock, and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Damiao Nguluve
- Animal Science Directorate, Agricultural Research Institute of Mozambique, Matola, Mozambique
| | - Hajime Kumagai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yimin Cai
- Crop, Livestock, and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Chen Y, Wang K, Cao L, Huang X, Li Y. Preparation of Reusable Porous Carbon Nanofibers from Oxidized Coal Liquefaction Residue for Efficient Adsorption in Water Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103614. [PMID: 37241241 DOI: 10.3390/ma16103614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Porous carbon nanofibers are commonly used for adsorption processes owing to their high specific surface area and rich pore structure. However, the poor mechanical properties of polyacrylonitrile (PAN)-based porous carbon nanofibers have limited their applications. Herein, we introduced solid waste-derived oxidized coal liquefaction residue (OCLR) into PAN-based nanofibers to obtain activated reinforced porous carbon nanofibers (ARCNF) with enhanced mechanical properties and regeneration for efficient adsorption of organic dyes in wastewater. This study examined the effects of contact time, concentration, temperature, pH, and salinity on the adsorption capacity. The adsorption processes of the dyes in ARCNF are appropriately described by the pseudo-second-order kinetic model. The maximum adsorption capacity for malachite green (MG) on ARCNF is 2712.84 mg g-1 according to the fitted parameters of the Langmuir model. Adsorption thermodynamics indicated that the adsorptions of the five dyes are spontaneous and endothermic processes. In addition, ARCNF have good regenerative performance, and the adsorption capacity of MG is still higher than 76% after 5 adsorption-desorption cycles. Our prepared ARCNF can efficiently adsorb organic dyes in wastewater, reducing the pollution to the environment and providing a new idea for solid waste recycling and water treatment.
Collapse
Affiliation(s)
- Yaoyao Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Kefu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Liqin Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Xueli Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Yizhao Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
11
|
Comprehensive analysis of microbiome, metabolome and transcriptome revealed the mechanisms of Moringa oleifera polysaccharide on preventing ulcerative colitis. Int J Biol Macromol 2022; 222:573-586. [PMID: 36115453 DOI: 10.1016/j.ijbiomac.2022.09.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the protective effect of Moringa oleifera polysaccharide (MOP) on ulcerative colitis (UC) and explore its mechanism through the combined analysis of microbiome, metabolome and transcriptome. A UC model in mice was established using dextran sulphate sodium. After a 21-day experiment, results showed that MOP could inhibit the weight loss and disease activity index in UC mice. The intervention of MOP decreased the expression of inflammatory cytokines and promoted the secretion of tight junctions. MOP could promote the growth of probiotics such as Lachnospiraceae_NK4A136, Intestinimonas and Bifidobacterium in UC mice. The results of metabolomic and transcriptomic analysis indicated that MOP could regulated the metabolism of polyunsaturated fatty acid and PPAR, TLR and TNF signalling pathways might play important roles in the process. Altogether, MOP could be used as a functional food to prevent UC.
Collapse
|
12
|
Benettayeb A, Usman M, Tinashe CC, Adam T, Haddou B. A critical review with emphasis on recent pieces of evidence of Moringa oleifera biosorption in water and wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48185-48209. [PMID: 35585450 PMCID: PMC9252946 DOI: 10.1007/s11356-022-19938-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/23/2022] [Indexed: 06/01/2023]
Abstract
The increasing demand for using competent and inexpensive methods based on biomaterials, like adsorption and biosorption, has given rise to the low-priced alternative biosorbents. In the past few years, Moringa oleifera (MO) has emerged as a green and low-priced biosorbent for the treatment of contaminated waters with heavy metals and dyes, and given its availability, we can create another generation of effective biosorbents based on different parts of this plant. In this review paper, we have briefed on the application of MO as a miraculous biosorbent for water purification. Moreover, the primary and cutting-edge methods for the purification and modification of MO to improve its adsorption are discussed. It was found that MO has abundant availability in the regions where it is grown, and simple chemical treatments increase the effectiveness of this plant in the treatment of some toxic contaminants. The different parts of this miraculous plant's "seeds, leaves, or even husks" in their natural form also possess appreciable sorption capacities, high efficiency for treating low metal concentrations, and rapid adsorption kinetics. Thus, the advantages and disadvantages of different parts of MO as biosorbent, the conditions favorable to this biosorption, also, the proposal of a logical mechanism, which can justify the high efficiency of this plant, are discussed in this review. Finally, several conclusions have been drawn from some important works and which are examined in this review, and future suggestions are proposed.
Collapse
Affiliation(s)
- Asmaa Benettayeb
- Laboratoire de Génie Chimique et de catalyse hétérogène, Département de Génie Chimique, Université de Sciences et de la Technologie-Mohamed Boudiaf, USTO-MB, BP 1505 EL-M'NAOUAR, Oran, Algeria.
- Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria.
| | - Muhammad Usman
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173, Hamburg, Germany.
| | - Coffee Calvin Tinashe
- Laboratoire de Génie Chimique et de catalyse hétérogène, Département de Génie Chimique, Université de Sciences et de la Technologie-Mohamed Boudiaf, USTO-MB, BP 1505 EL-M'NAOUAR, Oran, Algeria
- Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| | - Traore Adam
- Laboratoire de Génie Chimique et de catalyse hétérogène, Département de Génie Chimique, Université de Sciences et de la Technologie-Mohamed Boudiaf, USTO-MB, BP 1505 EL-M'NAOUAR, Oran, Algeria
- Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| | - Boumediene Haddou
- Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| |
Collapse
|
13
|
Development and Characterization of Bioadsorbents Derived from Different Agricultural Wastes for Water Reclamation: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052740] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The presence of dangerous pollutants in different water sources has restricted the availability of this natural resource. Thus, the development of new low-cost and environmentally-friendly technologies is currently required to ensure access to clean water. Various approaches to the recovery of contaminated water have been considered, including the generation of biomaterials with adsorption capacity for dangerous compounds. Research on bioadsorbents has boomed in recent years, as they constitute one of the most sustainable options for water treatment thanks to their abundance and high cellulose content. Thanks to the vast amount of information published to date, the present review addresses the current status of different biosorbents and the principal processes and characterization methods involved, focusing on base biomaterials such as fruits and vegetables, grains and seeds, and herbage and forage. In comparison to other reviews, this work reports more than 60 adsorbents obtained from agricultural wastes. The removal efficiencies and/or maximum adsorption capacities for heavy metals, industrial contaminants, nutrients and pharmaceuticals are presented as well. In addition to the valuable information provided in the literature investigation, challenges and perspectives concerning the implementation of bioadsorbents are discussed in order to comprehensively guide selection of the most suitable biomaterials according to the target contaminant and the available biowastes.
Collapse
|
14
|
Magnetic Fe3O4 nanoparticles loaded papaya (Carica papaya L.) seed powder as an effective and recyclable adsorbent material for the separation of anionic azo dye (Congo Red) from liquid phase: Evaluation of adsorption properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Nighojkar A, Zimmermann K, Ateia M, Barbeau B, Mohseni M, Krishnamurthy S, Dixit F, Kandasubramanian B. Application of neural network in metal adsorption using biomaterials (BMs): a review. ENVIRONMENTAL SCIENCE: ADVANCES 2022; 2:11-38. [PMID: 36992951 PMCID: PMC10043827 DOI: 10.1039/d2va00200k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
ANN models for predicting wastewater treatment efficacy of biomaterial adsorbents.
Collapse
Affiliation(s)
- Amrita Nighojkar
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Pune, India
| | - Karl Zimmermann
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Mohamed Ateia
- United States Environmental Protection Agency, Cincinnati, USA
| | - Benoit Barbeau
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Quebec, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | | | - Fuhar Dixit
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Pune, India
| |
Collapse
|
16
|
Effects of Malic Acid and Sucrose on the Fermentation Parameters, CNCPS Nitrogen Fractions, and Bacterial Community of Moringa oleifera Leaves Silage. Microorganisms 2021; 9:microorganisms9102102. [PMID: 34683423 PMCID: PMC8538485 DOI: 10.3390/microorganisms9102102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 01/05/2023] Open
Abstract
The present study investigated the effects of malic acid, sucrose, and their mixture on the fermentation parameters, Cornell Net Carbohydrate and Protein System (CNCPS) nitrogen fractions, and bacterial community of Moringa oleifera leaves (MOL) silages. The trial was divided into four treatments and labeled as CON (control group) and MLA, SUC, and MIX (respectively denoting the addition of 1% malic acid, 1% sucrose, and 1% malic acid + 1% sucrose to the fresh weight basis). The silage packages were opened on the 2nd, 5th, 10th, 20th, and 40th days of ensiling for subsequent determination. Malic acid and sucrose increased the lactic acid content (p < 0.05) and pH value, and the acetic acid contents of MLA and MIX were lower than those in CON (p < 0.05). Compared with sucrose, malic acid had a better capacity to preserve nutrients and inhibit proteolysis, and thus exerted better effects on the CNCPS nitrogen fractions. The results of 16S rRNA showed that the dominant phyla were Firmicutes and Proteobacteria and that the dominant genera were Lactobacillus and Weissella. With the application of silage additives and the processing of fermentation, there was a remarkable change in the composition and function of the bacterial community. The variation of the fermentation parameters and CNCPS nitrogen fractions in the MOL silages caused by malic acid and sucrose might be attributed to the dynamic and dramatic changes of the bacterial community.
Collapse
|
17
|
Saratale RG, Sun Q, Munagapati VS, Saratale GD, Park J, Kim DS. The use of eggshell membrane for the treatment of dye-containing wastewater: Batch, kinetics and reusability studies. CHEMOSPHERE 2021; 281:130777. [PMID: 34020192 DOI: 10.1016/j.chemosphere.2021.130777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The worldwide consumption of eggs is very high, leading to about 250,000 tons of eggshell membrane (ESM) waste annually. The present research thus investigated the potential use of ESM as an inexpensive and abundant adsorbent for Reactive Red 120 (RR120) in aqueous solutions, a widespread hydrophilic azo dye used in the textile industry. The chemical structure and morphology of ESM were characterized using various spectroscopic methods, including scanning electron microscopy, Fourier transform infrared spectroscopy, and elemental analysis. It was found that natural ESM has a porous structure and surface functional groups that are suitable for the adsorption of the target molecules. The impact of the operating conditions, including the variation in the pH and temperature, on the RR120 sorption capacity and mechanisms of ESM was also analyzed. The maximum monolayer adsorption ability of ESM for RR120 was found to be 191.5 mg/g at 318 K, and the sorption process was spontaneous and endothermic. The adsorption of RR120 onto ESM was significantly influenced by the solution pH and the use of NaOH as eluent, indicating that the driving force for this adsorption was electrostatic attraction. Subsequent desorption experiments using 0.1 M NaOH resulted in satisfactory recovery efficiency. Kinetic, isothermic, and thermodynamic analysis was also conducted to support the experimental findings. The experimental results for the adsorption kinetics of ESM were fitted by a pseudo-second-order model. In conclusion, ESM has the potential to be utilized as an eco-friendly and cost-effective adsorbent for the removal of RR120 from aqueous solutions.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Qianzhe Sun
- Department of Environmental Science and Engineering, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul, 120-750, South Korea
| | - Venkata Subbaiah Munagapati
- Department of Environmental Science and Engineering, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul, 120-750, South Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jinhee Park
- Department of Environmental Science and Engineering, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul, 120-750, South Korea
| | - Dong-Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul, 120-750, South Korea.
| |
Collapse
|
18
|
Rápó E, Tonk S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017-2021). Molecules 2021; 26:5419. [PMID: 34500848 PMCID: PMC8433845 DOI: 10.3390/molecules26175419] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/07/2022] Open
Abstract
The primary, most obvious parameter indicating water quality is the color of the water. Not only can it be aesthetically disturbing, but it can also be an indicator of contamination. Clean, high-quality water is a valuable, essential asset. Of the available technologies for removing dyes, adsorption is the most used method due to its ease of use, cost-effectiveness, and high efficiency. The adsorption process is influenced by several parameters, which are the basis of all laboratories researching the optimum conditions. The main objective of this review is to provide up-to-date information on the most studied influencing factors. The effects of initial dye concentration, pH, adsorbent dosage, particle size and temperature are illustrated through examples from the last five years (2017-2021) of research. Moreover, general trends are drawn based on these findings. The removal time ranged from 5 min to 36 h (E = 100% was achieved within 5-60 min). In addition, nearly 80% efficiency can be achieved with just 0.05 g of adsorbent. It is important to reduce adsorbent particle size (with Φ decrease E = 8-99%). Among the dyes analyzed in this paper, Methylene Blue, Congo Red, Malachite Green, Crystal Violet were the most frequently studied. Our conclusions are based on previously published literature.
Collapse
Affiliation(s)
- Eszter Rápó
- Environmental Science Department, Sapientia Hungarian University of Transylvania, Calea Turzii No. 4, 400193 Cluj-Napoca, Romania
- Department of Genetics, Microbiology and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly No. 1, H-2100 Gödöllő, Hungary
| | - Szende Tonk
- Environmental Science Department, Sapientia Hungarian University of Transylvania, Calea Turzii No. 4, 400193 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Subbaiah Munagapati V, Wen HY, Wen JC, Gollakota AR, Shu CM, Mallikarjuna Reddy G. Characterization of protonated amine modified lotus (Nelumbo nucifera) stem powder and its application in the removal of textile (Reactive Red 120) dye from liquid phase. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Munagapati VS, Wen HY, Wen JC, Gollakota ARK, Shu CM, Lin KYA, Wen JH. Adsorption of Reactive Red 195 from aqueous medium using Lotus ( Nelumbo nucifera) leaf powder chemically modified with dimethylamine: characterization, isotherms, kinetics, thermodynamics, and mechanism assessment. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:131-144. [PMID: 34057865 DOI: 10.1080/15226514.2021.1929060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
NOVELTY STATEMENT In the modern era, dyes are inevitable and their surging usage leads to colossal contamination of aqueous streams, thereby threatening both the land and aquatic species. One among such dye is anionic Reactive Red 195 (RR 195), and traceable even at minute concentrations of aqueous streams, posing a severe threat to living species. Moreover, RR 195 is highly recalcitrant offering resistance to biodegradation due to the presence of an azo (-N=N-) group within its structure. Thus, there is a definite need to address the issue of eliminating RR 195 from industrial wastewater effluents. In lieu of this, the primitive objective of this study is to test the effectiveness of the natural adsorbent lotus leaf (Nelumbo nucifera) for the selective sorption of RR 195 from the aqueous stream. Although ample literature is available on the direct utilization of lotus leaf as adsorbent, yet no study was performed on the chemical modification (dimethylamine) of the aforementioned adsorbent. Hence, an attempt has been made in this direction to add a new sorbent into the adsorbents database.
Collapse
Affiliation(s)
- Venkata Subbaiah Munagapati
- Research Center for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Hsin-Yu Wen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jet-Chau Wen
- Research Center for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science and Technology, Douliou, Taiwan.,Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Anjani R K Gollakota
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Chi-Min Shu
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Jhy-Horng Wen
- Department of Electrical Engineering, Tunghai University, Taichung, Taiwan
| |
Collapse
|
21
|
Moringa oleifera polysaccharides regulates caecal microbiota and small intestinal metabolic profile in C57BL/6 mice. Int J Biol Macromol 2021; 182:595-611. [PMID: 33836198 DOI: 10.1016/j.ijbiomac.2021.03.144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
This study investigated the effects of Moringa oleifera polysaccharides (MOP) on the serum indexes, small intestinal morphology, small intestinal metabolic profile, and caecal microbiota of mice. A new type of polysaccharides with 104,031 Da molecular weight and triple helix structure was isolated from M. oleifera leaves for in vivo experiment. Forty male SPF C57BL/6 mice aged 4 weeks were average divided into four groups randomly according to the MOP gavaged daily (0, 20, 40 and 60 mg/kg body weight MOP). After a 7-day preliminary trial period and a 28-day official trial period, the mice were slaughtered. Results showed that MOP reduced glucose, total cholesterol, and malondialdehyde. It also improved superoxide dismutase and catalase in serum (P < 0.05). For small intestinal morphology, MOP improved the villi length and crypt depth in both ileum and jejunum (P < 0.05); the ratio of villi length to crypt depth in jejunum increased (P < 0.05). MOP could cause the increase of beneficial bacteria and the decrease of harmful bacteria in caecum, further affecting the function of microbiota. In addition, MOP regulated 114 metabolites enriched in the pathway related to the synthesis and metabolism of micromolecules. In sum, MOP exerted positive effects on the serum indexes and intestinal health of mice.
Collapse
|
22
|
Bayramoglu G, Arica MY. Grafting of regenerated cellulose films with fibrous polymer and modified into phosphate and sulfate groups: Application for removal of a model azo-dye. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Gurav R, Bhatia SK, Choi TR, Choi YK, Kim HJ, Song HS, Lee SM, Lee Park S, Lee HS, Koh J, Jeon JM, Yoon JJ, Yang YH. Application of macroalgal biomass derived biochar and bioelectrochemical system with Shewanella for the adsorptive removal and biodegradation of toxic azo dye. CHEMOSPHERE 2021; 264:128539. [PMID: 33059279 DOI: 10.1016/j.chemosphere.2020.128539] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 05/22/2023]
Abstract
The present study aimed towards adsorptive removal of the toxic azo dye onto biochar derived from Eucheuma spinosum biomass. Characterization of the produced biochar was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET). Eucheuma spinosum biochar (ES-BC) produced at 600 °C revealed a maximum adsorption capacity of 331.97 mg/g towards reactive red 120 dye. The adsorption data fitted best to the pseudo-second order kinetics (R2 > 0.99) and Langmuir isotherm (R2 > 0.98) models. These adsorption models signified the chemisorption mechanism with monolayer coverage of the adsorbent surface with dye molecules. Furthermore, the adsorption process was mainly governed by electrostatic interaction, ion exchange, metal complexation, and hydrogen bonding as supported by the solution pH, FTIR, XPS, and XRD investigation. Nevertheless, alone adsorption technology could not offer a complete solution for eliminating the noxious dyes. Therefore, the bioelectrochemical system (BES) equipped with previously isolated marine Shewanella marisflavi BBL25 was intended for the complete remediation of azo dye. The BES II demonstrated highest dye decolorization (97.06%) within 48 h at biocathode where the reductive cleavage of the azo bond occurred. Cyclic voltammetry (CV) studies of the BES revealed perfect redox reactions taking place where the redox mediators shuttled the electrons to the dye molecule to accelerate the dye decolorization. Besides, the GC-MS analysis revealed biotransformation of the dye into less toxic metabolites as tested using a phyto and cytogenotoxicity.
Collapse
Affiliation(s)
- Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Yong-Keun Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Hyun Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Sun Mi Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Sol Lee Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Hye Soo Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Joonseok Koh
- Division of Chemical Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Jong-Min Jeon
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Chungnam, 331-825, South Korea
| | - Jeong-Jun Yoon
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Chungnam, 331-825, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
24
|
Munagapati VS, Wen HY, Vijaya Y, Wen JC, Wen JH, Tian Z, Reddy GM, Raul Garcia J. Removal of anionic (Acid Yellow 17 and Amaranth) dyes using aminated avocado ( Persea americana) seed powder: adsorption/desorption, kinetics, isotherms, thermodynamics, and recycling studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:911-923. [PMID: 33406890 DOI: 10.1080/15226514.2020.1866491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aminated avocado seed powder (AASP)-an eco-friendly novel adsorbent has been used for the removal of Acid Yellow 17 (AY 17) and Amaranth (AMR) from an aqueous phase. The AASP (before and after adsorption) was systematically characterized by different analytical techniques such as FT-IR, FESEM, EDX, and N2 adsorption-desorption analysis. Non-linear form of various kinetic (PFO and PSO) and isotherm (Langmuir and Freundlich) models were used to examine the adsorption behavior of AY 17 and AMR onto AASP. The adsorption of AY 17 and AMR onto AASP was well illustrated by the PSO kinetic model and Langmuir isotherm models. At 303 K, the maximum adsorption capacities (obtained from the Langmuir) of the AASP for AY 17 and AMR was 42.7 and 89.2 mg/g, respectively. The AY 17 and AMR adsorption was strongly pH-dependent with an optimum pH value of 2.0. Activation energy was calculated as 12.3 and 16.3 kJ/mol for AY 17 and AMR respectively, suggesting physical adsorption. The positive values of ΔGo and ΔHo indicated that the adsorption process of AY 17 and AMR onto AASP was non-spontaneous and endothermic. The negligible loss of adsorption capacity and excellent regeneration of AASP were observed for the five cycles. Statement of novelty: The present research majorly focused on the synthesis of adsorbent from Avocado seed for the removal of Acid Yellow 17 and Amaranth anionic dyes from aqueous solution. Although the literature is available on direct seed powder as adsorbent, to the best of our knowledge, no chemical modified adsorbent synthesis was not available. Hence, to fill the gap in the literature, we chose the following study that significantly enhanced the adsorption efficiency of the selected anionic dyes.
Collapse
Affiliation(s)
- Venkata Subbaiah Munagapati
- Research Centre for Soil and Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Hsin-Yu Wen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yarramuthi Vijaya
- Department of Chemistry, Vikrama Simhapuri University, Nellore, India
| | - Jet-Chau Wen
- Research Centre for Soil and Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science and Technology, Douliou, Taiwan.,Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Jhy-Horng Wen
- Department of Electrical Engineering, Tunghai University, Taichung, Taiwan
| | - Zhong Tian
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, PR China
| | - Guda Mallikarjuna Reddy
- Chemical Engineering Institute, Ural Federal University, Yekaterinburg, Russia.,Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Jarem Raul Garcia
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
25
|
Bayramoglu G, Arica MY. Modification of epoxy groups of poly(hydroxylmethyl methacrylate-co-glycidyl methacrylate) cryogel with H 3PO 4 as adsorbent for removal of hazardous pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43340-43358. [PMID: 32737786 DOI: 10.1007/s11356-020-10170-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Poly(hydroxylmethyl methacrylate-co-glycidyl methacrylate) (p(HEMA-GMA)) macroporous cryogel with high density of epoxy groups was synthesized, and the epoxy groups of the cryogel were modified into phosphonate groups. The effects of dye concentrations, adsorption time, pH, salt concentration, and adsorption temperature on the adsorption of Direct Blue-53 (DB-53) and Reactive Blue-160 (RB-160) dyes were studied. The maximum adsorption capacity was found to be 245.3 and 155.8 mg/g (0.255 or 0.119 mmol/g) for the DB-53 and RB-160 dyes, respectively. The higher adsorption capacity achieved for the DB-53 compared with the RB-160 dye can result from the pendant primary amino groups of the DB-53 dye as well as the smaller size of the dye molecule. The Langmuir isotherm model and the pseudo-second-order kinetic model well described the experimental data. The p(HEMA-GMA)-PO42- adsorbent has many operational advantages for the removal of pollutants. It could be a promising adsorbent to be used in industrial wastewater treatment.
Collapse
Affiliation(s)
- Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, Teknikokullar, 06500, Ankara, Turkey.
- Department of Chemistry, Faculty of Sciences, Gazi University, Teknikokullar, 06500, Ankara, Turkey.
| | - Mehmet Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, Teknikokullar, 06500, Ankara, Turkey
| |
Collapse
|
26
|
Cu/N doped lignin for highly selective efficient removal of As(v) from polluted water. Int J Biol Macromol 2020; 161:147-154. [DOI: 10.1016/j.ijbiomac.2020.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
|
27
|
Mohammed IA, Jawad AH, Abdulhameed AS, Mastuli MS. Physicochemical modification of chitosan with fly ash and tripolyphosphate for removal of reactive red 120 dye: Statistical optimization and mechanism study. Int J Biol Macromol 2020; 161:503-513. [DOI: 10.1016/j.ijbiomac.2020.06.069] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
|
28
|
Jawad AH, Mubarak NSA, Abdulhameed AS. Tunable Schiff’s base-cross-linked chitosan composite for the removal of reactive red 120 dye: Adsorption and mechanism study. Int J Biol Macromol 2020; 142:732-741. [DOI: 10.1016/j.ijbiomac.2019.10.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
|