1
|
Totoń E, Lisiak N, Romaniuk-Drapała A, Framski G, Wyszko E, Ostrowski T. Cytotoxic effects of kinetin riboside and its selected analogues on cancer cell lines. Bioorg Med Chem Lett 2024; 100:129628. [PMID: 38280656 DOI: 10.1016/j.bmcl.2024.129628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
N6-[(Furan-2-yl)methyl]adenosine (kinetin riboside) and its seven synthesized analogues were examined for the ability to inhibit the growth of five human carcinoma cell lines and for comparison of normal human lung fibroblast cell line (MRC-5). Out of the compounds evaluated, 8-azakinetin riboside was shown to exhibit significant cytotoxic activity for 72 h treatment against ovarian OVCAR-3 and pancreatic MIA PaCa-2 cancer cells (IC50 = 1.1 μM) with an observed weaker effect against MRC-5 cells (IC50 = 4.6 μM). Kinetin riboside, as well as its N6-[(furan-3-yl)methyl]- and N6-[(thien-2-yl)methyl]- counterparts, also exhibited cytotoxic activities at low micromolar levels but were non-selective over MRC-5 cells.
Collapse
Affiliation(s)
- Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Grzegorz Framski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Ostrowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
2
|
Berzina MY, Eletskaya BZ, Kayushin AL, Dorofeeva EV, Lutonina OI, Fateev IV, Zhavoronkova ON, Bashorin AR, Arnautova AO, Smirnova OS, Antonov KV, Paramonov AS, Dubinnyi MA, Esipov RS, Miroshnikov AI, Konstantinova ID. Intramolecular Hydrogen Bonding in N 6-Substituted 2-Chloroadenosines: Evidence from NMR Spectroscopy. Int J Mol Sci 2023; 24:ijms24119697. [PMID: 37298648 DOI: 10.3390/ijms24119697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Two forms were found in the NMR spectra of N6-substituted 2-chloroadenosines. The proportion of the mini-form was 11-32% of the main form. It was characterized by a separate set of signals in COSY, 15N-HMBC and other NMR spectra. We assumed that the mini-form arises due to the formation of an intramolecular hydrogen bond between the N7 atom of purine and the N6-CH proton of the substituent. The 1H,15N-HMBC spectrum confirmed the presence of a hydrogen bond in the mini-form of the nucleoside and its absence in the main form. Compounds incapable of forming such a hydrogen bond were synthesized. In these compounds, either the N7 atom of the purine or the N6-CH proton of the substituent was absent. The mini-form was not found in the NMR spectra of these nucleosides, confirming the importance of the intramolecular hydrogen bond in its formation.
Collapse
Affiliation(s)
- Maria Ya Berzina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Barbara Z Eletskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Alexei L Kayushin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Elena V Dorofeeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Olga I Lutonina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Ilya V Fateev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Olga N Zhavoronkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Arthur R Bashorin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Alexandra O Arnautova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Olga S Smirnova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Konstantin V Antonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Maxim A Dubinnyi
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, 141700 Moscow, Russia
| | - Roman S Esipov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Anatoly I Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Irina D Konstantinova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| |
Collapse
|
3
|
Agnihotri TG, Badgujar D, Sharma N, Jain A. A New Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) Method for Determination of Kinetin Riboside (Plant Hormone) in Dequalinium Chloride Based Self-assembled Vesicles: Development, Validation, and Force Degradation Study. Chromatographia 2023. [DOI: 10.1007/s10337-023-04246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
4
|
Implications of Oxidative Stress in Glioblastoma Multiforme Following Treatment with Purine Derivatives. Antioxidants (Basel) 2021; 10:antiox10060950. [PMID: 34204594 PMCID: PMC8231124 DOI: 10.3390/antiox10060950] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, small compound-based therapies have provided new insights into the treatment of glioblastoma multiforme (GBM) by inducing oxidative impairment. Kinetin riboside (KR) and newly designed derivatives (8-azaKR, 7-deazaKR) selectively affect the molecular pathways crucial for cell growth by interfering with the redox status of cancer cells. Thus, these compounds might serve as potential alternatives in the oxidative therapy of GBM. The increased basal levels of reactive oxygen species (ROS) in GBM support the survival of cancer cells and cause drug resistance. The simplest approach to induce cell death is to achieve the redox threshold and circumvent the antioxidant defense mechanisms. Consequently, cells become more sensitive to oxidative stress (OS) caused by exogenous agents. Here, we investigated the effect of KR and its derivatives on the redox status of T98G cells in 2D and 3D cell culture. The use of spheroids of T98G cells enabled the selection of one derivative-7-deazaKR-with comparable antitumor activity to KR. Both compounds induced ROS generation and genotoxic OS, resulting in lipid peroxidation and leading to apoptosis. Taken together, these results demonstrated that KR and 7-deazaKR modulate the cellular redox environment of T98G cells, and vulnerability of these cells is dependent on their antioxidant capacity.
Collapse
|