1
|
Debnath S, Ghosh B, Mondal M, Roy N, Mallick K, Maji J, Sahana S, Sinha A, Dey S, Kumar A, Roy MN. Investigation of Host-Guest Inclusion Complex of Mephenesin with α-Cyclodextrin for Innovative Application in Biological System. ACS OMEGA 2024; 9:36066-36075. [PMID: 39220532 PMCID: PMC11359629 DOI: 10.1021/acsomega.3c08185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The goal of this study was to use coevaporation to look into how polyether compounds like mephenesin (MEP) can be encapsulated into the host molecule α-cyclodextrin's nanohydrophobic cage. Fourier transform infrared spectroscopy (FT-IR) investigations, powder X-ray diffraction (PXRD), and 1H NMR were among the spectroscopic techniques used to describe the inclusion complex. Additionally, Job's plot has been utilized to illustrate how MEP is encapsulated with α-cyclodextrin (α-CD) at a 1:1 molar ratio. The thermal stability of MEP increased after encapsulation according to thermogravimetric analysis (TGA) and differential thermal analysis (DTA) experiments. Mephenesin fits into the cavity of α-cyclodextrin in a 1:1 ratio, as observed by molecular docking for the inclusion complex to find the most appropriate orientation. This observation is further supported by the Job plot. Furthermore, a comparison was carried out based on a cell viability study between the medication and its inclusion complex.
Collapse
Affiliation(s)
- Subhajit Debnath
- Department
of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Biswajit Ghosh
- Department
of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Modhusudan Mondal
- Department
of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Niloy Roy
- Department
of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Kangkan Mallick
- Department
of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Joydeb Maji
- Department
of Botany, Siliguri College, Siliguri, Darjeeling, West Bengal 734001, India
| | - Sudip Sahana
- Department
of Chemistry, Saldiha College, Saldiha, Bankura, West Bengal 722136, India
| | - Anuradha Sinha
- Department
of Chemistry, Siliguri College, Siliguri, Darjeeling, West Bengal 734001, India
| | - Sangita Dey
- Department
of Biotechnology, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Anoop Kumar
- Department
of Biotechnology, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Mahendra Nath Roy
- Department
of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013, India
| |
Collapse
|
2
|
Ghosh B, Roy N, Roy D, Mandal S, Mondal M, Dakua VK, Dutta A, Sen S, Kumar A, Chakraborty R, Roy MN. Exploring Inclusion Complex of an Antithyroid Drug (PTU) with α-Cyclodextrin for Innovative Applications by Physicochemical Approach Optimized by Molecular Docking. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Feng Y, Chen S, Li Z, Gu Z, Xu S, Ban X, Hong Y, Cheng L, Li C. A review of controlled release from cyclodextrins: release methods, release systems and application. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34797201 DOI: 10.1080/10408398.2021.2007352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The controlled release of guest molecules from cyclodextrin (CD) inclusion complexes is very important for specific industrial applications in foods, medicine, cosmetics, textiles, agriculture, environmental protection, and chemical materials. The term "controlled release" encompasses several related methods, including those referred to as immediate release, sustained release and targeted release. Many different CD-based controlled release systems are currently used in practical applications. CD inclusion complexes, CD coupling, supramolecular hydrogels, and supramolecular micelles are among the most common. This review systematically introduces the principles and applications of CD-based controlled release systems, providing a theoretical basis for improving the bioavailability of effective substances and broadening their range of application.
Collapse
Affiliation(s)
- Yan Feng
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Shuangdi Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Shude Xu
- Key Laboratory of Aquaculture Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Mariculture of Ministry Education, Ocean University of China, Qingdao, People's Republic of China.,Guangdong VTR Bio-tech Co., Ltd, Zhuhai, People's Republic of China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
4
|
de Oliveira LC, de Menezes DLB, da Silva VC, Lourenço EMG, Miranda PHS, da Silva MDJA, Lima ES, Júnior VFDV, Marreto RN, Converti A, Barbosa EG, de Lima ÁAN. In Silico Study, Physicochemical, and In Vitro Lipase Inhibitory Activity of α, β-Amyrenone Inclusion Complexes with Cyclodextrins. Int J Mol Sci 2021; 22:9882. [PMID: 34576044 PMCID: PMC8468659 DOI: 10.3390/ijms22189882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
α,β-amyrenone (ABAME) is a triterpene derivative with many biological activities; however, its potential pharmacological use is hindered by its low solubility in water. In this context, the present work aimed to develop inclusion complexes (ICs) of ABAME with γ- and β-cyclodextrins (CD), which were systematically characterized through molecular modeling studies as well as FTIR, XRD, DSC, TGA, and SEM analyses. In vitro analyses of lipase activity were performed to evaluate possible anti-obesity properties. Molecular modeling studies indicated that the CD:ABAME ICs prepared at a 2:1 molar ratio would be more stable to the complexation process than those prepared at a 1:1 molar ratio. The physicochemical characterization showed strong evidence that corroborates with the in silico results, and the formation of ICs with CD was capable of inducing changes in ABAME physicochemical properties. ICs was shown to be a stronger inhibitor of lipase activity than Orlistat and to potentiate the inhibitory effects of ABAME on porcine pancreatic enzymes. In conclusion, a new pharmaceutical preparation with potentially improved physicochemical characteristics and inhibitory activity toward lipases was developed in this study, which could prove to be a promising ingredient for future formulations.
Collapse
Affiliation(s)
- Luana Carvalho de Oliveira
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Danielle Lima Bezerra de Menezes
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Valéria Costa da Silva
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Estela Mariana Guimarães Lourenço
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Paulo Henrique Santana Miranda
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Márcia de Jesus Amazonas da Silva
- Biological Activity Laboratory, Pharmacy Department, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; (M.d.J.A.d.S.); (E.S.L.)
| | - Emerson Silva Lima
- Biological Activity Laboratory, Pharmacy Department, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; (M.d.J.A.d.S.); (E.S.L.)
| | | | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, I-16145 Genoa, Italy;
| | - Euzébio Guimaraes Barbosa
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Ádley Antonini Neves de Lima
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| |
Collapse
|
5
|
A comparative UHPLC-Q/TOF-MS-based eco-metabolomics approach reveals temperature adaptation of four Nepenthes species. Sci Rep 2020; 10:21861. [PMID: 33318532 PMCID: PMC7736350 DOI: 10.1038/s41598-020-78873-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Nepenthes, as the largest family of carnivorous plants, is found with an extensive geographical distribution throughout the Malay Archipelago, specifically in Borneo, Philippines, and Sumatra. Highland species are able to tolerate cold stress and lowland species heat stress. Our current understanding on the adaptation or survival mechanisms acquired by the different Nepenthes species to their climatic conditions at the phytochemical level is, however, limited. In this study, we applied an eco-metabolomics approach to identify temperature stressed individual metabolic fingerprints of four Nepenthes species: the lowlanders N. ampullaria, N. rafflesiana and N. northiana, and the highlander N. minima. We hypothesized that distinct metabolite regulation patterns exist between the Nepenthes species due to their adaptation towards different geographical and altitudinal distribution. Our results revealed not only distinct temperature stress induced metabolite fingerprints for each Nepenthes species, but also shared metabolic response and adaptation strategies. The interspecific responses and adaptation of N. rafflesiana and N. northiana likely reflected their natural habitat niches. Moreover, our study also indicates the potential of lowlanders, especially N. ampullaria and N. rafflesiana, to produce metabolites needed to deal with increased temperatures, offering hope for the plant genus and future adaption in times of changing climate.
Collapse
|
6
|
Roy N, Ghosh B, Roy D, Bhaumik B, Roy MN. Exploring the Inclusion Complex of a Drug (Umbelliferone) with α-Cyclodextrin Optimized by Molecular Docking and Increasing Bioavailability with Minimizing the Doses in Human Body. ACS OMEGA 2020; 5:30243-30251. [PMID: 33251458 PMCID: PMC7689913 DOI: 10.1021/acsomega.0c04716] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/04/2020] [Indexed: 05/10/2023]
Abstract
In this study, umbelliferone and α-cyclodextrin host molecules have been mixed up through a coprecipitation method to prepare a supramolecular complex to provide physical insights into the formation and stability of the inclusion complex (IC). The prepared hybrid was characterized by 1H nuclear magnetic resonance (1H NMR), Fourier transform infrared (FTIR) spectroscopy, electrospray ionization (ESI) mass spectrometry, DSC, and fluorescence spectroscopic studies. Job's plot provides a stoichiometric ratio of 1:1 and the Benesi-Hildebrand double reciprocal plot gives binding constant values using fluorescence spectroscopic titrations and the ESI mass data support the experimental observations. The results of molecular modeling were systematically analyzed to validate the inclusion complexation. In preliminary computational screening, α-cyclodextrin IC of umbelliferone was found to be quite stable based on the docking score, binding free energies, and dynamic simulations. In addition, the results obtained from 1H NMR and FTIR spectroscopy studies supported the inclusion complexation phenomenon. The results obtained from computational studies were found to be consistent with the experimental data to ascertain the encapsulation of umbelliferone into α-cyclodextrin.
Collapse
Affiliation(s)
- Niloy Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Biswajit Ghosh
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Debadrita Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Biswajit Bhaumik
- Department
of Chemistry, Surya Sen Mahavidyalaya, Jalpaiguri 734004, India
| | - Mahendra Nath Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, India
| |
Collapse
|
7
|
Chen X, Chu Y, Gu L, Zhou M, Ding CF. The non-covalent complexes of α- or γ-cyclodextrin with divalent metal cations determined by mass spectrometry. Carbohydr Res 2020; 492:107987. [PMID: 32251851 DOI: 10.1016/j.carres.2020.107987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
Noncovalent complexes between cyclodextrin (CD) and divalent metal cations drew growing attentions due to their applications in the pharmaceutical industry for molecular recognition. In this study, gas-phase binding of noncovalent complexes between α-, or γ-CD and divalent metal cations was investigated by electrospray ionization mass spectrometry (ESI-MS), demonstrating the formation of 1:1 stoichiometric noncovalent complexes. The binding of the complexes were furtherly confirmed by collision-induced dissociation (CID) with tandem mass spectrometry. The CID revealed the fragmentation pattern were strongly dependent on the electronic configuration of the cations and the charge separation reaction frequently took place in the cyclodextrin-complexes with transition metal cations. For the non-covalent complexes of α-CD with Mg2+, Ca2+, Sr2+ or Ba2+ at a collision energy of 25 eV, the fragments attributed to [α-CD + cation-nGlucose unit]2+ were observed (named series A). However, for the γ-CD complexes with transition metal cations Co2+, Ni2+, Cu2+ or Zn2+, apart from fragments of series A, it were observed fragment ions of [γ-CD + cation-nGlucose unit]+ (named series B), together with the Glucose unit (m/z 163.2) and its products with loss of H2O (m/z 145.2 and 126.8). The CID performed at a collision energy from 10 to 50 eV showed that the binding strength of complexes increase in the order of [α-CD + Mg]2+, [α-CD + Ca]2+, [α-CD + Sr]2+ and [α-CD + Ba]2+. Through mass spectrometric titrations, the values of dissociation constant Kd (in μmol•L-1) for the complexes of α-CD with Ca2+ or Ni2+ were obtained, which were 4.30 and 4.26, respectively.
Collapse
Affiliation(s)
- Xin Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yanqiu Chu
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Liancheng Gu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingfei Zhou
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Chuan-Fan Ding
- Department of Chemistry, Fudan University, Shanghai, 200433, China; Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|