1
|
Khamitova А, Berillo D, Lozynskyi A, Konechnyi Y, Mural D, Georgiyants V, Lesyk R. Thiadiazole and Thiazole Derivatives as Potential Antimicrobial Agents. Mini Rev Med Chem 2024; 24:531-545. [PMID: 37448365 DOI: 10.2174/1389557523666230713115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND This review summarizes data on heterocyclic systems with thiadiazole and thiazole fragments in molecules as promising antimicrobial agents. INTRODUCTION Thiadiazole and thiazole backbones are the most favored and well-known heterocycles, a common and essential feature of various drugs. These scaffolds occupy a central position and are the main structural components of numerous drugs with a wide spectrum of action. These include antimicrobial, antituberculous, anti-inflammatory, analgesic, antiepileptic, antiviral, and anticancer agents. METHOD The research is based on bibliosemantic and analytical methods using bibliographic and abstract databases, as well as databases of chemical compounds. RESULT This review reports on thiadiazole and thiazole derivatives, which have important pharmacological properties. We are reviewing the structural modifications of various thiadiazole and thiazole derivatives, more specifically, the antimicrobial activity reported over the last years, as we have taken this as our main research area. 80 compounds were illustrated, and various derivatives containing hydrazone bridged thiazole and pyrrole rings, 2-pyridine and 4-pyridine substituted thiazole derivatives, compounds containing di-, tri- and tetrathiazole moieties, spiro-substituted 4- thiazolidinone-imidazoline-pyridines were analyzed. Derivatives of 5-heteroarylidene-2,4- thiazolidinediones, fluoroquinolone-thiadiazole hybrids, and others. CONCLUSION 1,3,4-thiadiazoles and thiazoles are valuable resource for researchers engaged in rational drug design and development in this area.
Collapse
Affiliation(s)
- Аkzhonas Khamitova
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, NJSC «Asfendiyarov Kazakh National Medical University», 94 Tole Bi, Almaty, 050000, Kazakhstan
| | - Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, NJSC «Asfendiyarov Kazakh National Medical University», 94 Tole Bi, Almaty, 050000, Kazakhstan
- Department of Chemistry and Biochemical Engineering, Institute of Chemical and Biological Technologies (IHBT), Satbayev University 22 Satbaev, Almaty, 050013, Kazakhstan
| | - Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
| | - Yulian Konechnyi
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
| | - Dmytro Mural
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4 Valentynivska, Kharkiv, 61168, Ukraine
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4 Valentynivska, Kharkiv, 61168, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
- Department of Biotechnology and Cell Biology, University of Information Technology and Management in Rzeszow, 2 Sucharskiego, Rzeszow, 35-225, Poland
| |
Collapse
|
2
|
Nasir NM, Alsalim TA, El-Arabey AA, Abdalla M. Anticancer, antioxidant activities and molecular docking study of thiazolidine-4-one and thiadiazol derivatives. J Biomol Struct Dyn 2023; 41:3976-3992. [PMID: 35467480 DOI: 10.1080/07391102.2022.2060306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
Abstract
Liver cancer accounts for a major portion of the global cancer burden. In many nations, the prevalence of this condition has risen in recent decades. New series of thiazolidinones and thiadiazolidine have been designed, synthesized, and evaluated for potential antioxidant and antihepatocarcinogenic activity. The antioxidant activity was evaluated using a DPPH assay. Furthermore, we examined the compounds against Hepg-2 cells using MTT assay, flow cytometry analysis through the cell cycle, reactive oxygen species, and apoptosis. The result showed that compound 6b has the highest antioxidant activity with IC50 = 60.614 ± 0.739 µM. The anticancer activity showed that compounds 5 and 6b have significant toxicity against liver cancer cells Hepg2, IC50 values (9.082 and 4.712) µM, respectively. Flow cytometry experiments revealed that compound 5 arrested Hepg-2 cells in the S process, while compound 6b arrested Hepg-2 cells in the G1. Compound 6b had a greater reduction in reactive oxygen species and late apoptosis than compound 5. Substantially, compound 5 had affinity energies of -7.6 and -8.5 for Akt and CDK4 proteins, respectively, but compound 6b had affinity energies of -7.8 and -10.1 for Akt1 and CDK4 proteins, respectively. Consequently, compound 6b had lower binding energies than compound 5. In this work, we used multiple bioinformatics methods to shed light on the prospective therapeutic use of these series as novel candidates to target immune cells in the tumor microenvironment of hepatocellular carcinomas such as CD8+ T cells, endothelial cells, and hematopoietic stem cells.
Collapse
Affiliation(s)
- Noor M Nasir
- Department of Chemistry, Faculty of Education for Pure Sciences, University of Basrah, Basrah, Iraq
| | - Tahseen A Alsalim
- Department of Chemistry, Faculty of Education for Pure Sciences, University of Basrah, Basrah, Iraq
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Shandong Province, People's Republic of China
| |
Collapse
|
3
|
Taha M, Uddin N, Saad SM, Iqbal N, Fareed G, Anouar EH, Hassan MH, Almandil NB, Salahuddin M, Khan KM, Wadood A, Rahman AU. An effort to find new α -amylase inhibitors as potent antidiabetics compounds based on indole-based-thiadiazole analogs. J Biomol Struct Dyn 2022; 40:13103-13114. [PMID: 34569449 DOI: 10.1080/07391102.2021.1982774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inhibition of α-amylase enzyme is of key significance for the therapy of diabetes mellitus (DM). Numerous indole-based compounds have earlier been described for broad range of bioactivities. From our previous study, we knew that indole and thiadiazole are potent inhibitors of diabetics II. We design the hybrid molecules of them and synthesized 18 derivatives of indole-based-thiadiazole (1-18). All synthesized compounds were characterized using different spectroscopic methods and evaluated for their α-amylase inhibitory activities. All synthetic compounds, except 4, 13, 15 and 16, were found to be strongly active (IC50 values in the range of 0.80 ± 0.05 - 9.30 ± 0.20 µM) than the standard drug, acarbose (IC50 = 11.70 ± 0.10 µM). Nevertheless, compound 18 was found to be inactive. The modes of binding interactions of five most active compounds 2, 3, 5, 10 and 17 were also studies through molecular docking study. In brief, current study identifies a novel class of α-amylase inhibitors which can be further studied for the treatment of hyperglycemia and obesity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | | | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot, Pakistan
| | - Ghulam Fareed
- Pharmaceutical Research Center, PCSIR Laboratories Complex Karachi, Karachi, Pakistan
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Maya Haj Hassan
- Department of Biology, Faculty of Sciences, Lebanese University, Zahle Lebanon
| | - Noor Barak Almandil
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ashfaq Ur Rahman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
4
|
Synthesis of S-substituted 5-sulfonylmethyl(ethyl)-1,3,4-thiadiazol-2-amines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Synthesis of Novel Indole Schiff Base Compounds and Their Antifungal Activities. Molecules 2022; 27:molecules27206858. [PMID: 36296452 PMCID: PMC9609699 DOI: 10.3390/molecules27206858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
A series of novel indole Schiff base derivatives (2a–2t) containing a 1,3,4-thiadiazole scaffold modified with a thioether group were synthesized, and their structures were confirmed using FT-IR, 1H NMR, 13C NMR, and HR-MS. In addition, the antifungal activity of synthesized indole derivatives was investigated against Fusarium graminearum (F. graminearum), Fusarium oxysporum (F. oxysporum), Fusariummoniliforme (F.moniliforme), Curvularia lunata (C. lunata), and Phytophthora parasitica var. nicotiana (P. p. var. nicotianae) using the mycelium growth rate method. Among the synthesized indole derivatives, compound 2j showed the highest inhibition rates of 100%, 95.7%, 89%, and 76.5% at a concentration of 500 μg/mL against F. graminearum, F. oxysporum, F.moniliforme, and P. p. var. nicotianae, respectively. Similarly, compounds 2j and 2q exhibited higher inhibition rates of 81.9% and 83.7% at a concentration of 500 μg/mL against C. lunata. In addition, compound 2j has been recognized as a potential compound for further investigation in the field of fungicides.
Collapse
|
6
|
Alqahtani AM, Abdelazeem AH, El-Din AGS, Abdou R, Amin AH, Arab HH. Novel S-Mercaptotriazolebenzothiazole-Based Derivatives as Antimicrobial
Agents: Design, Synthesis, and In Vitro Evaluation. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220301154851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The search for novel antimicrobial agents effective against the emerging resistant
pathogenic microorganisms to the currently used drugs is a substantial need. Herein, a novel series of
compounds bearing a benzothiazolotriazole scaffold was synthesized and evaluated as potential antimicrobial
agents against a panel of gram +ve, gram -ve bacteria, and fungi species.
Methods:
The new compounds were synthesized via hybridization between the benzothiazolotriazole
scaffold and thiadiazole ring or various substituted aromatic moieties using the tethering technique in
drug discovery.
Results:
The in vitro results revealed that these compounds have significant antifungal activity rather than
antibacterial potential due to their high similarity with tricyclazole. Compound 7b bearing bromo-phenyl
moiety was the most potent derivative with an MIC value of 8 μg/mL against Candida albicans and Penicillium
chrysogenum.
Conclusion:
Collectively, benzothiazolotriazole-based derivatives are good antifungal leads and should
be further actively pursued to expand treatment options for systemic and topical fungal infections.
Collapse
Affiliation(s)
- Alaa M. Alqahtani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed H. Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Pharmacy, College of Pharmacy, Riyadh Elm University, Riyadh 11681, Saudi Arabia
| | - Asmaa G. Safi El-Din
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Randa Abdou
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21514, Kingdom of Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ali H. Amin
- Zoology Department, Faculty of Science, Mansoura University, Egypt
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
7
|
Serkov SA, Sigai NV, Kostikova NN, Fedorov AE, Gazieva GA. Synthesis and evaluation of cytotoxicity of S-substituted 5-sulfanylmethyl(ethyl)-1,3,4-thiadiazol-2-amines. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Optimized POCl3-assisted synthesis of 2-amino-1,3,4-thiadiazole/1,3,4-oxadiazole derivatives as anti-influenza agents. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
9
|
Roman G. Thiophene-containing compounds with antimicrobial activity. Arch Pharm (Weinheim) 2022; 355:e2100462. [PMID: 35289443 DOI: 10.1002/ardp.202100462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Thiophene, as a member of the group of five-membered heterocycles containing one heteroatom, is one of the simplest heterocyclic systems. Many synthetic strategies allow the accurate positioning of various functionalities onto the thiophene ring. This review provides a comprehensive, systematic and detailed account of the developments in the field of antimicrobial compounds featuring at least one thiophene ring in their structure, over the last decade.
Collapse
Affiliation(s)
- Gheorghe Roman
- Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Iaşi, Romania
| |
Collapse
|
10
|
Kalantarian SJ, Kefayati H, Montazeri N. Synthesis and Antimicrobial Evaluation of Novel
tris
‐Thiadiazole
Derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Hassan Kefayati
- Department of Chemistry Rasht Branch, Islamic Azad University Rasht Iran
| | - Naser Montazeri
- Department of Chemistry Tonekabon Branch, Islamic Azad University Tonekabon Iran
| |
Collapse
|
11
|
Al-Wahaibi LH, Mary YS, Shyma Mary Y, Al-Mutairi AA, Hassan HM, El-Emam AA, Yadav R. Investigation of the electronic properties of solvents (water, benzene, methanol) using IEFPCM model, spectroscopic investigation with docking and MD simulations of a thiadiazole derivative with anti-tumor activities. J Mol Liq 2022; 348:118061. [DOI: 10.1016/j.molliq.2021.118061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Muğlu H, Akın M, Çavuş MS, Yakan H, Şaki N, Güzel E. Exploring of antioxidant and antibacterial properties of novel 1,3,4-thiadiazole derivatives: Facile synthesis, structural elucidation and DFT approach to antioxidant characteristics. Comput Biol Chem 2021; 96:107618. [PMID: 34952377 DOI: 10.1016/j.compbiolchem.2021.107618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/02/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
In recent years, compounds containing thiophene and 1,3,4-thiadiazole skeletons have become important cyclic compounds, especially in medicinal chemistry. In this manner, we synthesized and isolated seven 1,3,4-thiadiazole derivatives with thiophene groups and fully characterized by elemental analysis and general spectroscopic methods such as 1H NMR, 13C NMR, and FT-IR. Antibacterial activities of the title compounds were investigated by using TLC-Dot blot, macro dilution, well diffusion, and growth curve analysis methods. Compounds 1 and 6 showed inhibitory activities against all tested gram-negative and gram-positive bacteria. TLC-DPPH and DPPH assays, on the other hand, were performed to detect the antioxidant activities of the 1,3,4-thiadiazole derivatives and compound 1 exhibited the highest antioxidant activity at all tested concentrations. QTAIM and NCI calculations were performed as well as structural, electronic, and spectral analyzes using density functional theory (DFT). Calculations were carried out at the B3lyp/6-311 + +g(2d,2p) level of theory, and the data were used to examine the antioxidant activity of the compounds.
Collapse
Affiliation(s)
- Halit Muğlu
- Department of Chemistry, Kastamonu University, Kastamonu, Turkey
| | - Mustafa Akın
- Petroyağ and Kimyasallar San.Tic. A.Ş, Research and Development Center, Kocaeli, Turkey
| | - M Serdar Çavuş
- Department of Biomedical Engineering, Kastamonu University, Kastamonu, Turkey
| | - Hasan Yakan
- Department of Science and Mathematics Education, Ondokuz Mayıs University, Samsun, Turkey
| | - Neslihan Şaki
- Department of Chemistry, Kocaeli University, Kocaeli, Turkey.
| | - Emre Güzel
- Department of Engineering Fundamental Sciences, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, Turkey; Biomedical Technologies Application and Research Center (BIYOTAM), Sakarya University of Applied Sciences, Sakarya, Turkey.
| |
Collapse
|
13
|
Abu-Melha S. Synthesis, Molecular Modeling, and Anticancer Screening of Some New Imidazothiadiazole Analogs. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1957951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sraa Abu-Melha
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
14
|
Synthesis, antimicrobial and antiproliferative activities, molecular docking, and computational studies of novel heterocycles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02251-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Arshad M, Khan MS, Nami SAA. Norfloxacin Analogues: Drug Likeness, Synthesis, Biological, and Molecular Docking Assessment. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Nisa S, Yusuf M. Novel 1,3,4-bisthiadiazoline derivatives: Syntheses, in-vitro antimicrobial and antioxidant studies. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2020.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Sağlık BN, Kaya Çavuşoğlu B, Acar Çevik U, Osmaniye D, Levent S, Özkay Y, Kaplancıklı ZA. Novel 1,3,4-thiadiazole compounds as potential MAO-A inhibitors - design, synthesis, biological evaluation and molecular modelling. RSC Med Chem 2020; 11:1063-1074. [PMID: 33479699 DOI: 10.1039/d0md00150c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/24/2020] [Indexed: 01/30/2023] Open
Abstract
Monoamine oxidases (MAOs) are important drug targets for the management of neurological disorders. Herein, a series of new 1,3,4-thiadiazole derivatives bearing various alkyl/arylamine moieties as MAO inhibitors were designed and synthesized. All of the compounds were more selective against hMAO-A than hMAO-B. The half maximal inhibitory concentration (IC50) values of most of the compounds were lower than that of the common drug moclobemide (IC50 = 4.664 μM) and compound 6b was proven to be the most active compound (IC50 = 0.060 μM). Moreover, it was seen that compound 6b showed a similar inhibition profile to that of clorgyline (IC50 = 0.048 μM). The inhibition profile was found to be reversible and competitive for compound 6b with MAO-A selectivity. Molecular modelling studies aided in the understanding of the interaction modes between compound 6b and MAO-A. Furthermore, this compound was predicted to have a good pharmacokinetic profile and high BBB penetration. Therefore, such compounds are of interest towards developing new MAO inhibitors.
Collapse
Affiliation(s)
- Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey.,Doping and Narcotic Compounds Analysis Laboratory , Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Betül Kaya Çavuşoğlu
- Doping and Narcotic Compounds Analysis Laboratory , Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey.,Department of Pharmaceutical Chemistry , Faculty of Pharmacy , Bulent Ecevit University , 67600 Zonguldak , Turkey . ; ; Tel: +90 (372) 261 31 54
| | - Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey.,Doping and Narcotic Compounds Analysis Laboratory , Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey.,Doping and Narcotic Compounds Analysis Laboratory , Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey.,Doping and Narcotic Compounds Analysis Laboratory , Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey.,Doping and Narcotic Compounds Analysis Laboratory , Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| |
Collapse
|