1
|
Popoola SA, Al Dmour H, Al-Faze R, Alam MG, Rakass S, Oudghiri Hassani H, Kooli F. Regeneration and Single Stage Batch Adsorber Design for Efficient Basic Blue-41 Dye Removal by Porous Clay Heterostructures Prepared from Al13 Montmorillonite and Pillared Derivatives. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4948. [PMID: 39459653 PMCID: PMC11509242 DOI: 10.3390/ma17204948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
Porous clay heterostructures are a hybrid precursor between the pillaring process and organoclays. In this study, the organoclay was substituted by an aluminium intercalated species clay or pillared alumina clays. A porous clay heterostructure was successfully achieved from an aluminium intercalated species clay, due to the easy exchange of the aluminium species by the cosurfactant and silica species. However, using alumina pillared clays, the porous clay heterostructures were not formed; the alumina species were strongly attached to clay sheets which made difficult their exchange with cosurfactant molecules. In this case, the silica species were polymerized and decorated the surface of the used materials as indicated by different characterization techniques. The specific surface area of the porous clay heterostructure material reached 880 m2/g, and total pore volume of 0.258 cc/g, while the decorated silica alumina pillared clays exhibited lower specific surface area values of 244-440 m2/g and total pore volume of 0.315 to 0.157 cc/g. The potential of the synthesized materials was evaluated as a basic blue-41 dye removal agent. Porous clay heterostructure material has a removal capacity of 279 mg/g; while the other materials exhibited lower removal capacities between 75 mg/g and 165 mg/g. The used regeneration method was related to the acidity of the studied materials. The acidity of the materials possessed an impact on the adopted regeneration procedure in this study, the removal efficiency was maintained at 80% of the original performance after three successive regeneration cycles for the porous clay heterostructure. The Langmuir isotherm characteristics were used to propose a single-stage batch design. Porous clay heterostructures with a higher removal capacity resulted in a decrease in the quantities needed to achieve the target removal percentage of the BB-41 dye from an aqueous solution.
Collapse
Affiliation(s)
- Saheed A. Popoola
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawwarah 42351, Saudi Arabia;
| | - Hmoud Al Dmour
- Department of Physics, Faculty of Science, Mu’tah University, Mu’tah 61710, Jordan;
| | - Rawan Al-Faze
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawwarah 41147, Saudi Arabia;
| | - Mohd Gulfam Alam
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawwarah 42351, Saudi Arabia;
| | - Souad Rakass
- Laboratory of Applied Organic Chemistry (LCOA), Chemistry Department, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box 2202, Fez 30000, Morocco;
| | - Hicham Oudghiri Hassani
- Engineering Laboratory of Organometallic, Molecular Materials and Environment (LIMOME), Faculty of Sciences, Chemistry Department, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 (Atlas), Fez 30000, Morocco;
| | - Fethi Kooli
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawwarah 42351, Saudi Arabia;
| |
Collapse
|
2
|
Xu C, Ning Y, Wang C, Yang S, Yang Z, Li Y. Effect of cations on monochlorobenzene adsorption onto bentonite at the coexistence of Tween 80. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133883. [PMID: 38412648 DOI: 10.1016/j.jhazmat.2024.133883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
The effect of several prevalent cations (including Na+, K+, Mg2+, Ca2+, Al3+, and Fe3+) on the adsorption of monochlorobenzene (MCB) onto bentonite was investigated at the coexistence of nonionic surfactant Tween 80 (T80) in surfactant-enhanced remediation (SER). They are all favorable for MCB and T80 adsorption, especially Mg2+ and Ca2+. Adsorption of MCB is strongly depended on T80 micelles. When its concentration exceeds the solubility, MCB is easier to bind with T80 micelles and be adsorbed by bentonite. Acidic environment can facilitate MCB and T80 adsorption, but the effect of cations on the adsorption is most significant under alkaline conditions. Adsorption capacity of MCB increases first followed by a slight decrease with increasing cations concentrations. The maximum adsorption rate of MCB determined is about 68.4% in a solution containing Mg2+ in the isothermal adsorption of MCB, while it is only 6.8% in a cation-free solution. Various characterizations showed that cations mainly changed the repulsion between bentonite particles and T80 micelles and the agglomeration and structure of bentonite, thus affecting the adsorption of MCB and T80 micelles. Our research demonstrated the nonnegligible promotion of MCB adsorption on bentonite by cations and acidic environment, which will adversely affect SER efficiency.
Collapse
Affiliation(s)
- Changzhong Xu
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Yu Ning
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China.
| | - Changxiang Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Sen Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Zhe Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430070, China
| | - Yilian Li
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| |
Collapse
|
3
|
Dlamini MC, Dlamini ML, Mente P, Tlhaole B, Erasmus R, Maubane-Nkadimeng MS, Moma JA. Photocatalytic abatement of phenol on amorphous TiO2-BiOBr-bentonite heterostructures under visible light irradiation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
High potential of amine rice husk magnetic biocomposites for Cu(II) ion adsorption and heterogeneous degradation of contaminants in aqueous solution. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Du W, Yang Y, Hu L, Chang B, Cao G, Nasir M, Lv J. Combined determination analysis of surface properties evolution towards bentonite by pH treatments. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
6
|
Barakan S, Aghazadeh V. The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2572-2599. [PMID: 33113058 DOI: 10.1007/s11356-020-10985-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
This review discusses the recent trends in the research over the last 30 years to use clay minerals in natural and modified forms for removing different toxic organic/inorganic pollutants. The natural and modified forms of clay minerals have an exceptional ability to remove different contaminants. However, the modification methods can improve the clay mineral adsorption properties that consequently increase more adsorption sites and functional groups to adsorb different environmental pollutants. This review shows the importance of modification methods and more extension of novel clay preparation based on nanotechnology which could raise the control of pollution. The syntheses of functionalized clays such as pillared clays and porous clay heterostructures introduce the new class of heterostructure materials with high adsorption capacity, capability, and selectivity. Due to the acceptable properties of heterostructure materials including high specific surface area, thermal and mechanical stability, and the existence of multifunctional groups to selective adsorption, this review collects more literature of research related to environmental protection issues. However, it is expected much attention to get a better understanding of the adsorption mechanism, regeneration, and recovery process of these materials.
Collapse
Affiliation(s)
- Shima Barakan
- Department of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran
| | - Valeh Aghazadeh
- Department of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran.
| |
Collapse
|