1
|
Yashyanaik S, Venkatesh T, Ereshnaik, Vinuth M. Red-emitting 4-methyl coumarin fused barbituric acid as an electrochemical sensor for catechol detection and probe for latent fingerprints. LUMINESCENCE 2024; 39:e4825. [PMID: 38961763 DOI: 10.1002/bio.4825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Herein, we have reported a red-emitting 4-methyl coumarin fused barbituric acid azo dye (4-MCBA) synthesized by conventional method. Density functional theory (DFT) studies of tautomer compounds were done using (B3LYP) with a basis set of 6-31G(d,p). NLO analysis has shown that tautomer has mean first-order hyperpolarisabilities (β) value of 1.8188 × 10-30 esu and 1.0470 × 10-30 esu for azo and hydrazone forms, respectively, which is approximately nine and five times greater than the magnitude of urea. 4-MCBA exhibited two absorption peaks in the range of 290-317 and 379-394 nm, and emission spectra were observed at 536 nm. CV study demonstrated that the modified 4-MCBA/MGC electrode exhibited excellent electrochemical sensitivity towards the detection of catechol and the detection limit is 9.39 μM under optimum conditions. The 4-MCBA employed as a fluorescent probe for the visualisation of LFPs on various surfaces exhibited Level-I to level-II LFPs, with low background interference.
Collapse
Affiliation(s)
- Surendranaik Yashyanaik
- Department of P.G. Studies and Research in Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, Karnataka, India
| | - Talavara Venkatesh
- Department of P.G. Studies and Research in Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, Karnataka, India
| | - Ereshnaik
- Department of P.G. Studies and Research in Industrial Chemistry, Sir. M.V. Govt. Science College, Bommanakatte, Bhadravathi, Karnataka, India
| | - Mirle Vinuth
- Department of Chemistry, The National Institute of Engineering, North campus, Mysore, Karnataka, India
| |
Collapse
|
2
|
Ramle AQ, Chan NNMY, Ng MP, Tan CH, Sim KS, Tiekink ERT, Fei CC. Structural insights and cytotoxicity evaluation of benz[e]indole pyrazolyl-substituted amides. Mol Divers 2024; 28:1363-1376. [PMID: 37278911 DOI: 10.1007/s11030-023-10662-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
Five new compounds of benz[e]indole pyrazolyl-substituted amides (2a-e) were synthesised in low to good yields via the direct amide-coupling reaction between a pyrazolyl derivative containing a carboxylic acid and several amine substrates. The molecular structures were determined by various spectroscopic methods, such as NMR (1H, 13C and 19F), FT-IR and high-resolution mass spectrometry (HRMS). X-ray crystallographic analysis on the 4-fluorobenzyl derivative (2d) reveals the amide-O atom to reside to the opposite side of the molecule to the pyrazolyl-N and pyrrolyl-N atoms; in the molecular packing, helical chains feature amide-N‒H⋯N(pyrrolyl) hydrogen bonds. Density-functional theory (DFT) at the geometry-optimisation B3LYP/6-31G(d) level on the full series shows general agreement with the experimental structures. While the LUMO in each case is spread over the benz[e]indole pyrazolyl moiety, the HOMO spreads over the halogenated benzo-substituted amide moieties or is localised near the benz[e]indole pyrazolyl moieties. The MTT assay showed that 2e, exhibited the highest toxicity against a human colorectal carcinoma (HCT 116 cell line) without appreciable toxicity towards the normal human colon fibroblast (CCD-18Co cell line). Based on molecular docking calculations, the probable cytotoxic mechanism of 2e is through the DNA minor groove binding.
Collapse
Affiliation(s)
- Abdul Qaiyum Ramle
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | | | - Min Phin Ng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chun Hoe Tan
- Department of Biotechnology, Faculty of Applied Science, Lincoln University College, Selangor, Malaysia
| | - Kae Shin Sim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Chee Chin Fei
- Nanotechnology and Catalysis Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Lakshmanan P, Gayathri E, Thirumaran S, Ciattini S. Synthesis, crystal structure, DFT and Hirshfeld surface analysis of Ni(II) complexes: Precursor for nickel sulfide nanoparticles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Yurchenko DV, Lytvynenko AS, Abdullayev EN, Peregon NV, Gavrilenko KS, Gorlova AO, Ryabukhin SV, Volochnyuk DM, Kolotilov SV. Catalytic Oxidation of Benzoins by Hydrogen Peroxide on Nanosized HKUST-1: Influence of Substituents on the Reaction Rates and DFT Modeling of the Reaction Path. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020747. [PMID: 36677805 PMCID: PMC9861975 DOI: 10.3390/molecules28020747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
In this research, the oxidation of a series of benzoins, R-C(=O)-CH(OH)-R, where R = phenyl, 4-methoxyphenyl, 4-bromophenyl, and 2-naphthyl, by hydrogen peroxide in the presence of nanostructured HKUST-1 (suspension in acetonitrile/water mixture) was studied. The respective benzoic acids were the only products of the reactions. The initial average reaction rates were experimentally determined at different concentrations of benzoin, H2O2 and an effective concentration of HKUST-1. The sorption of the isotherms of benzoin, dimethoxybenzoin and benzoic acid on HKUST-1, as well as their sorption kinetic curves, were measured. The increase in H2O2 concentration expectedly led to an acceleration of the reaction. The dependencies of the benzoin oxidation rates on the concentrations of both benzoin and HKUST-1 passed through the maxima. This finding could be explained by a counterplay between the increasing reaction rate and increasing benzoin sorption on the catalyst with the increase in the concentration. The electronic effect of the substituent in benzoin had a significant influence on the reaction rate, while no relation between the size of the substrate molecule and the rate of its oxidation was found. It was confirmed by DFT modeling that the reaction could pass through the Baeyer-Villiger mechanism, involving an attack by the HOO- anion on the C atom of the activated C=O group.
Collapse
Affiliation(s)
- Darya V. Yurchenko
- L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028 Kyiv, Ukraine
| | - Anton S. Lytvynenko
- L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028 Kyiv, Ukraine
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Emir N. Abdullayev
- L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028 Kyiv, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., 02094 Kyiv, Ukraine
| | - Nina V. Peregon
- L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028 Kyiv, Ukraine
| | - Konstantin S. Gavrilenko
- Enamine Ltd., 78 Chervonotkatska Str., 02094 Kyiv, Ukraine
- Institute of High Technologies, National Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., 01033 Kyiv, Ukraine
| | - Alina O. Gorlova
- Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, 5 Murmanska Str., 02094 Kyiv, Ukraine
| | - Sergey V. Ryabukhin
- Enamine Ltd., 78 Chervonotkatska Str., 02094 Kyiv, Ukraine
- Institute of High Technologies, National Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., 01033 Kyiv, Ukraine
- Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, 5 Murmanska Str., 02094 Kyiv, Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd., 78 Chervonotkatska Str., 02094 Kyiv, Ukraine
- Institute of High Technologies, National Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., 01033 Kyiv, Ukraine
- Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, 5 Murmanska Str., 02094 Kyiv, Ukraine
| | - Sergey V. Kolotilov
- L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028 Kyiv, Ukraine
- Institute of High Technologies, National Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., 01033 Kyiv, Ukraine
- Correspondence:
| |
Collapse
|
5
|
Spectroscopic, structural, and intermolecular interactions of 4-(2‑hydroxy-3-methoxybenzylideneamino)-N-(5-methylisoxazol-3-yl)benzenesulfonamide enol-imine and keto-amine isomers. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
6
|
Ali A, Ashfaq M, Din ZU, Ibrahim M, Khalid M, Assiri MA, Riaz A, Tahir MN, Rodrigues-Filho E, Imran M, Kuznetsov A. Synthesis, Structural, and Intriguing Electronic Properties of Symmetrical Bis-Aryl-α,β-Unsaturated Ketone Derivatives. ACS OMEGA 2022; 7:39294-39309. [PMID: 36340158 PMCID: PMC9631725 DOI: 10.1021/acsomega.2c05441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Three symmetrical bis-aryl-α,β-unsaturated ketone derivatives, 2,6-di((E)-benzylidene)-cyclohexan-1-one (DBC), 2,6-bis((E)-4-chlorobenzylidene)cyclohexan-1-one (BCC), and (1E,1'E,4E,4'E)-5,5'-(1,4-phenylene)bis(2-methyl-1-phenylpenta-1,4-dien-3-one) (PBMP), have been prepared using the aldol condensation approach toward ketones having two enolizable sites. The structures of DBC, BCC, and PBMP have been resolved via spectrometric methods. Moreover, the crystal structure of PBMP is determined by the single-crystal X-ray diffraction (SC-XRD) technique, which revealed that the PBMP molecular assembly is stabilized by the intermolecular C-H···O bonding and C-O···π and weak T-shaped offset π···π stacking interactions. The Hirshfeld surface analysis (HSA) of the PBMP crystal structure was performed as well, and the results were compared with the results of DBC and BCC. The density functional theory (DFT) study results revealed that the longer conjugated molecule of PBMP has smaller but still quite significant HOMO-LUMO gaps compared to the smaller molecules of BCC and DBC. The natural population analysis (NPA) and natural bonding orbital (NBO) analysis were performed. Accordingly, the hydrogen bonding and dipole-dipole interactions stabilize the crystal structures of these compounds. Additionally, the NBO analysis showed numerous high-energy stabilizing interactions for the PBMP compound due to the presence of numerous delocalized and relatively easily polarizable π-electrons, thus implying its significant thermodynamic stability. According to the global reactivity parameter (GRP) analysis, the compounds BCC and DBC are relatively stable in redox processes and have high thermodynamic stability and relatively lower reactivity in general. The molecular electrostatic potential (MEP) analysis results imply potential formation of the intermolecular hydrogen bonding and dispersion interactions, which stabilizes the crystal structures of these compounds.
Collapse
Affiliation(s)
- Akbar Ali
- Department
of Chemistry, Government College University, Faisalabad38040, Pakistan
| | - Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha40100, Pakistan
| | - Zia Ud Din
- LaBioMMi,
Departamento de Química, Universidade
Federal de São Carlos, CP 676, 13.565-905São Carlos, SP, Brazil
| | - Muhammad Ibrahim
- Department
of Applied Chemistry, Government College
University, Faisalabad38040, Pakistan
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan64200, Pakistan
| | - Mohammed A. Assiri
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha61413, Saudi Arabia
| | - Arish Riaz
- Department
of Applied Chemistry, Government College
University, Faisalabad38040, Pakistan
| | | | - Edson Rodrigues-Filho
- LaBioMMi,
Departamento de Química, Universidade
Federal de São Carlos, CP 676, 13.565-905São Carlos, SP, Brazil
| | - Muhammad Imran
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha61413, Saudi Arabia
| | - Aleksey Kuznetsov
- Departamento
de Química, Campus Santiago Vitacura, Universidad Técnica Federico Santa María, Av. Santa María 6400, Vitacura7660251, Chile
| |
Collapse
|
7
|
Ashfaq M, Ali A, Tahir MN, Kuznetsov A, Munawar KS, Muhammad S. Synthesis, single-crystal exploration, hirshfeld surface analysis, and DFT investigation of the thiosemicarbazones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Malik AN, Kuznetsov A, Ali A, Ashfaq M, Tahir MN, Siddique A. Imine-based Zwitterion: Synthesis, single-crystal characterization, and computational investigation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Siva V, Murugan A, Shameem AS, Priya MU, Thangarasu S, Athimoolam S, Bahadur SA. Design and supramolecular architecture of stepped molecular aggregation in monochloroacetate salt of 2-aminopyridine: Its bacterial and cancer inhibitory properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Ali A, Kuznetsov A, Ashfaq M, Tahir MN, Khalid M, Imran M, Irfan A. Synthesis, single-crystal exploration, and theoretical insights of arylsulfonylated 2-amino-6-methylpyrimidin derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Shakdofa MME, Saleem QM, Shakdofa AME. Structure investigation, density functional theory, and biostudy of synthesized dihydrazone incorporating isatin moiety and its homo‐bimetallic complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohamad M. E. Shakdofa
- Department of Chemistry, College of Science and Arts at Khulais University of Jeddah Jeddah Saudi Arabia
| | - Qaid M. Saleem
- Department of Chemistry, College of Science and Arts at Khulais University of Jeddah Jeddah Saudi Arabia
| | - Adel M. E. Shakdofa
- Department of Chemistry, Faculty of Science Menoufia University Shebin El‐Kom Egypt
| |
Collapse
|
12
|
Ali A, Khalid M, Din ZU, Asif HM, Imran M, Tahir MN, Ashfaq M, Rodrigues-Filho E. Exploration of structural, electronic and third order nonlinear optical properties of crystalline chalcone systems: Monoarylidene and unsymmetrical diarylidene cycloalkanones. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Synthesis of novel benzohydrazide and benzoic acid derivatives: Crystal Structure, Hirshfeld surface analysis and DFT computational studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Senthilkumar K, Kanagathara N, Ragavendran V, Natarajan V, Marchewka M. Quantum chemical computational studies of 1,3-diammonium propylarsenate: a semi organic crystalline salt. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1963282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- K. Senthilkumar
- Department of Physics, Rajalakshmi Engineering College, Thandalam, Chennai, Tamil Nadu, India
| | - N. Kanagathara
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India
| | - V. Ragavendran
- Department of Physics, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Enathur, Kanchipuram, Tamil Nadu, India
| | - V. Natarajan
- Department of Physics, Rajalakshmi Institute of Technology, Kuthambakkam, Chennai, Tamil Nadu, India
| | - M.K. Marchewka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
15
|
2-Amino-6-methylpyridine based co-crystal salt formation using succinic acid: Single-crystal analysis and computational exploration. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129893] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Ashfaq M, Ali A, Kuznetsov A, Tahir MN, Khalid M. DFT and single-crystal investigation of the pyrimethamine-based novel co-crystal salt: 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium-4-methylbenzoate hydrate (1:1:1) (DEMH). J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129445] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Single crystal structure, Hirshfeld surface analysis and DFT studies on 2‑bromo-4‑chloro-6-[(2‑hydroxy-5-methylanilino)methylidene]cyclohexa-2,4-dienone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Studies of crystal growth, structural, spectral and optical properties of solution grown 2-phenylethylaminium p-nitrophenolate monohydrate single crystals for efficient nonlinear optical applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Imran M, Irfan A, Assiri MA, Sumrra SH, Saleem M, Hussain R, Al-Sehemi AG. Coumaronochromone as antibacterial and carbonic anhydrase inhibitors from Aerva persica (Burm.f.) Merr.: experimental and first-principles approaches. ACTA ACUST UNITED AC 2021; 76:71-78. [PMID: 32910785 DOI: 10.1515/znc-2020-0138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/22/2020] [Indexed: 11/15/2022]
Abstract
The Aerva plants are exceptionally rich in phytochemicals and possess therapeutics potential. Phytochemical screening shows that Aerva persica (Burm.f.) Merr. contains highest contents i.e., total phenolics, flavonoids, flavonols, tannins, alkaloids, carbohydrates, anthraquinones and glycosides. In-vitro antibacterial and enzymatic (carbonic anhydrase) inhibition studies on methanol extracts of A. persica indicated the presence of biological active constituents within chloroform soluble portions. Investigation in the pure constituents on the chloroform portions of A. persica accomplished by column chromatography, NMR and MS analysis. The bioguided isolation yields four chemical constituents of coumaronochromone family, namely aervin (1-4). These pure chemical entities (1-4) showed significant antibacterial activity in the range of 60.05-79.21 µg/ml against various bacterial strains using ampicillin and ciprofloxacin as standard drugs. The compounds 1-4 showed promising carbonic anhydrase inhibition with IC50 values of 19.01, 18.24, 18.65 and 12.92 µM, respectively, using standard inhibitor acetazolamide. First-principles calculations revealed comprehensive intramolecular charge transfer in the studied compounds 1-4. The spatial distribution of highest occupied and lowest unoccupied molecular orbitals, ionization potential, molecular electrostatic potential and Hirshfeld analysis revealed that these coumaronochromone compounds would be proficient biological active compounds. These pure constituents may be used as a new pharmacophore to treat leaukomia, epilepsy, glaucoma and cystic fibrosis.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Research Center for Advanced Materials Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Muhammad Saleem
- Department of Chemistry, University of Education, Campus Dera Ghazi Khan, Lahore, Punjab, 32200, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Education, Campus Dera Ghazi Khan, Lahore, Punjab, 32200, Pakistan
| | - Abdullah G Al-Sehemi
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Research Center for Advanced Materials Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| |
Collapse
|
20
|
Kanagathara N, MaryAnjalin F, Ragavendran V, Dhanasekaran D, Usha R, Rao RGS, Marchewka MK. Experimental and theoretical (DFT) investigation of crystallographic, spectroscopic and Hirshfeld surface analysis of anilinium arsenate. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Adole VA, Pawar TB, Jagdale BS. DFT computational insights into structural, electronic and spectroscopic parameters of 2-(2-Hydrazineyl)thiazole derivatives: a concise theoretical and experimental approach. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1817456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Vishnu A. Adole
- Department of Chemistry, Arts, Science and Commerce College, Manmad, Nashik, India
| | - Thansing B. Pawar
- Department of Chemistry, Loknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati, Nashik, India
| | - Bapu S. Jagdale
- Department of Chemistry, Arts, Science and Commerce College, Manmad, Nashik, India
| |
Collapse
|
22
|
Gold(I), silver(I) and copper(I) complexes of 2,4,6-trimethylphenyl-3-benzoylthiourea; synthesis and biological applications. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|