1
|
Ambaison FE, Ramasamy SK, Natarajan S, Venkatesan G, Awad Alahmadi T, Rohini P, A A. A carboethoxy quinoline-Derived Schiff base chemosensor: Crystal structure, selective Hg 2+ ion detection and its computational study. ENVIRONMENTAL RESEARCH 2024; 252:118983. [PMID: 38692421 DOI: 10.1016/j.envres.2024.118983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/09/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Environmental monitoring of mercury (Hg2+) ions has become increasingly important as a result of their detrimental effects on biological organisms at all levels. To recognize toxic metal ions, utmost effort has been devoted to developing new materials that are highly selective, ultra-sensitive, and provide rapid response. In this context, a new chemosensor, 2-imino [N - (N-amido phenyl)]-6-methoxy-3-carbethoxy quinoline (L), has been synthesized by combining 2-formyl-6-methoxy-3-carbethoxy quinoline and benzhydrazide and it has been extensively characterized by NMR, FTIR, ESI-Mass and SCXRD analysis. Probe L has excellent specificity and sensitivity toward Hg2+ ions in semi-aqueous solutions, with a detection limit of 0.185 μM, regardless of the presence of other interfering cations. Chromogenic behavior was demonstrated by the L when it changed the color of the solution from colorless to light yellow, a change that can be observed visually. The probe L forms a 1:1 stochiometric complex with an estimated association constant (Ka) of 6.74 × 104 M-1. The 1H NMR change and density functional theory calculations were analyzed to improve our understanding of the sensing mechanism. Also, an inexpensive and simple paper-based test kit has been developed for the on-site detection of mercury ions in water samples.
Collapse
Affiliation(s)
- Franklin Ebenazer Ambaison
- Post-Graduate and Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur-641 602, Tamil Nadu, India
| | - Selva Kumar Ramasamy
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana. 133207. India.
| | - Sampathkumar Natarajan
- Post-Graduate and Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur-641 602, Tamil Nadu, India.
| | - Geetha Venkatesan
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, India
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Ponnusamy Rohini
- Department of Physics, Bannari Amman Institute of Technology, Sathyamangalam, 638 401, Tamil Nadu, India
| | - Anderson A
- School of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| |
Collapse
|
2
|
Ismail H, Ahmad MN, Normaya E. Structural, optimization of and mechanistic insights into a new thiosemicarbazone derivative as a highly sensitive and selective chemosensor for Hg 2+ recognition using DFT, COSMO-RS, RSM, and molecular dynamics simulation approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123340. [PMID: 37716039 DOI: 10.1016/j.saa.2023.123340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
A new thiosemicarbazone derivative, N-(2-hydroxyphenyl)-2-[1-(pyridin-4-yl)ethylidene]hydrazinecarbothioamide (HPEH), has been synthesized, characterized, and further developed as a highly selective and sensitive colorimetric chemosensor for Hg2+ recognition in environmental water samples. Structural conformers of HPEH were successfully identified using a combination of the potential energy surface (PES) and time-dependent density functional theory (TD-DFT) methods. The synthesized HPEH was successfully characterized further and analyzed based on its harmonic vibrational frequencies, NMR spectra, and electronic transitions using the DFT approach. Sigma profiles were generated using the COSMO-RS approach to identify a compatible medium for HPEH to act as a chemosensor. The conditions for the highly sensitive and selective detection of Hg2+ by HPEH were successfully optimized using the statistical response surface methodology approach. The optimum sensing of HPEH occurred in an 8:2 v/v DMSO/pH 7.8 solution at a 20:60 μM HPEH/Hg2+ concentration and after a reaction time of 18 min, with statistically significant independent variables (p < 0.05) for all parameters. Under optimal conditions, the lowest Hg2+ concentration detected by HPEH was 3.56 µM, indicating that HPEH can serve as an alternative and comparable probe for the detection of Hg2+ in aqueous systems. Using the optimized results, the interaction between HPEH and Hg2+ in the chemosensor system was successfully modeled, and the model was subsequently used with the TD-DFT, non-covalent interaction-reduced density gradient (NCI-RDG), and molecular dynamics approaches to gain mechanistic insights into the interaction. The results showed that the newly synthesized HPEH, in addition to being cost-effective, could serve as a suitable alternative and comparable chemosensor for Hg2+ recognition in water samples, with the advantages of being efficient, portable, and eco-friendly, and offering rapid analysis without the need of specialized training.
Collapse
Affiliation(s)
- Hakimah Ismail
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Mohammad Norazmi Ahmad
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia; Advanced Sustainable Research Group (ASReG), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia; River of Life Kuantan Chapter, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Erna Normaya
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia; Advanced Sustainable Research Group (ASReG), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia; River of Life Kuantan Chapter, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| |
Collapse
|
3
|
A new azo Schiff base probe for detection of Cr3+, HSO4-, and CN-: Computational studies, 4-to-2 encoder, and integrated molecular logic circuits. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
V S, A S, A M, S T, Bahadur S A, S A. Structural, Vibrational and Electro-Optical Properties on Perchlorate Salt of 4-Methoxyanline Studied through Experimental and Theoretical Methods. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2097711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Siva V
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Shameem A
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Murugan A
- Department of Physics, School of Advanced Sciences, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
- Condensed Matter Physics Laboratory, International Research Centre, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - Thangarasu S
- Department of Physics, School of Advanced Sciences, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
- Condensed Matter Physics Laboratory, International Research Centre, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - Asath Bahadur S
- Department of Physics, School of Advanced Sciences, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
- Condensed Matter Physics Laboratory, International Research Centre, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - Athimoolam S
- Department of Physics, University College of Engineering Nagercoil, Anna University, Nagercoil, Tamil Nadu, India
| |
Collapse
|
5
|
Kaewnok N, Kraithong S, Mahaveero T, Maitarad P, Sirirak J, Wanichacheva N, Swanglap P. Silver nanoparticle incorporated colorimetric/fluorescence sensor for sub-ppb detection of mercury ion via plasmon-enhanced fluorescence strategy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Celik S, Demircioğlu Z, Yurdakul S, Büyükgüngör O. Synthesis, crystal structure, Hirshfeld surface analysis and molecular docking analysis of new cadmium(II) iodide complex with the pyridine, 4-(1,1-dimethylethyl). J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2031168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sibel Celik
- Department of Health Care Services, Ahi Evran University, Kırşehir, Turkey
| | - Zeynep Demircioğlu
- Department of Physics, Faculty of Arts and Science, Sinop University, Sinop, Turkey
| | - Senay Yurdakul
- Department of Physics, Faculty of Science, Gazi University, Ankara, Turkey
| | - Orhan Büyükgüngör
- Department of Physics, Faculty of Arts and Science, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
7
|
Ismail H, Ahmad MN, Normaya E. A highly sensitive and selective thiosemicarbazone chemosensor for detection of Co 2+ in aqueous environments using RSM and TD/DFT approaches. Sci Rep 2021; 11:20963. [PMID: 34697346 PMCID: PMC8545950 DOI: 10.1038/s41598-021-00264-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
Chemosensor using organic based compound offering superior alternative method in recognizing metal ion in environmental water. The optimization process strongly affected the performance of the designed sensor. In this study, a highly sensitive and selective colorimetric sensor system utilizing an organic compound, namely thiosemicarbazone-linked acetylpyrazine (TLA), to recognize Co2+ ions in different environmental water samples was successfully developed using the response surface methodology (RSM) approach. The developed model was optimized successfully and had statistically significant independent variables (p < 0.05), with optimum recognition occurring in 8:2 v/v DMSO/water at a pH of 5.3, a 100:70 µM TLA/Co2+ concentration, and 15 min of reaction time. Under optimum conditions, the TLA sensor recognized Co2+ ions at concentrations as low as 1.637 µM, which is lower than the detection limit of flame atomic absorption spectroscopy (FAAS). Theoretical approaches supported the experimental data as well as characterized and predicted the mechanistic non-covalent interactions of TLA-Co2+ within the chemosensing system. Finally, all the positive results produced in this study point to TLA as an alternative and comparable probe for recognizing Co2+ pollution in water that is cost effective, movable and easy-to-handle, requires no special training and ecofriendly.
Collapse
Affiliation(s)
- Hakimah Ismail
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Mohammad Norazmi Ahmad
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia.,River of Life Kuantan Chapter, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia.,Innovative Toyyib Environmental Minds, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia.,Drug and Poison Call Centre, IIUM Poison Centre, Office of Campus Director, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Erna Normaya
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia. .,River of Life Kuantan Chapter, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia. .,Innovative Toyyib Environmental Minds, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia.
| |
Collapse
|
8
|
Mohammad Alwi M, Normaya E, Ismail H, Iqbal A, Mat Piah B, Abu Samah MA, Ahmad MN. Two-Dimensional Infrared Correlation Spectroscopy, Conductor-like Screening Model for Real Solvents, and Density Functional Theory Study on the Adsorption Mechanism of Polyvinylpolypyrrolidone for Effective Phenol Removal in an Aqueous Medium. ACS OMEGA 2021; 6:25179-25192. [PMID: 34632177 PMCID: PMC8495713 DOI: 10.1021/acsomega.1c02699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The discharge of industrial effluents, such as phenol, into aquatic and soil environments is a global problem due to its serious negative impacts on human health and aquatic ecosystems. In this study, the ability of polyvinylpolypyrrolidone (PVPP) to remove phenol from an aqueous medium was investigated. The results showed that a significant proportion of phenol (up to 74.91%) was removed using PVPP at pH 6.5. Isotherm adsorption experiments of phenol on PVPP indicated that the best-fit adsorption was obtained using Langmuir models. The response peaks of the hydroxyl groups of phenol (OH) and the carboxyl groups (i.e., C=O) of PVPP were altered, indicating the formation of a hydrogen bond between the PVPP and phenol during phenol removal, as characterized using 1D and 2D IR spectroscopy. The resulting complexes were successfully characterized based on their thermodynamic properties, Mulliken charge, and electronic transition using the DFT approach. To clarify the types of interactions taking place in the complex systems, quantum theory of atoms in molecules (QTAIM) analysis, reduced density gradient noncovalent interaction (RDG-NCI) approach, and conductor-like screening model for real solvents (COSMO-RS) approach were also successfully calculated. The results showed that the interactions that occurred in the process of removing phenol by PVPP were through hydrogen bonding (based on RDG-NCI and COSMO-RS), which was identified as an intermediate type (∇2ρ(r) > 0 and H < 0, QTAIM). To gain a deeper understanding of how these interactions occurred, further characterization was performed based on adsorption mechanisms using molecular electrostatic potential, global reactivity, and local reactivity descriptors. The results showed that during hydrogen bond formation, PVPP acts as a nucleophile, whereas phenol acts as an electrophile and the O9 atom (i.e., donor electron) reacts with the H22 atom (i.e., acceptor electron).
Collapse
Affiliation(s)
- Muhammad
Ammar Mohammad Alwi
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Erna Normaya
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- River
of Life (ROL) Kuantan Chapter, International
Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Innovative
Toyyib Environment Minds (ITEMS), International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Hakimah Ismail
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Anwar Iqbal
- School
of Chemical Science, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Bijarimi Mat Piah
- Faculty
of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia
| | - Mohd Armi Abu Samah
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- River
of Life (ROL) Kuantan Chapter, International
Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Innovative
Toyyib Environment Minds (ITEMS), International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Mohammad Norazmi Ahmad
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- River
of Life (ROL) Kuantan Chapter, International
Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Innovative
Toyyib Environment Minds (ITEMS), International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Drug and
Poison Call Centre, IIUM Poison Centre, International Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
9
|
Kraithong S, Chailek N, Sirirak J, Suwatpipat K, Wanichacheva N, Swanglap P. Improving sensitivity of a new Hg2+-Selective fluorescent sensor by silver nanoparticles via plasmonic enhancement. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Normaya E, Baharu NA, Ahmad MN. Synthesis of thiosemicarbazone-based colorimetric chemosensor for Cu2+ ions’ recognition in aqueous medium: Experimental and theoretical studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|