1
|
Zaman F, Abbas J, Ullah I, Khan A, Saqib NU, Mukamil S, Albargi HB, Rooh G, Srisittipokakun N, Rachniyom W, Intachai N, Kothan S, Kaewkhao J. Investigation of energy transfer mechanism in Gd3+ to Sm3+ and Eu3+ in borate glasses for the application of solid-state lighting devices. SOLID STATE SCIENCES 2025; 163:107878. [DOI: 10.1016/j.solidstatesciences.2025.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
|
2
|
Ullah N, Noureen B, Zahra QUA, Aziz T, Shehzadi S, Alfaifif MY, Elbehairif SEI, Thebo KH, Ullah A, Iqbal H. A Novel Fluorescent Aptasensor Based on Mesoporous Silica Nanoparticles
for Selective and Sensitive Detection of Saxitoxin in Shellfish. CURR ANAL CHEM 2023; 19:677-684. [DOI: 10.2174/0115734110269897231020065609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 07/25/2024]
Abstract
Background:
Saxitoxin (STX) stands as one of the most potent marine biotoxins, exhibiting
high lethality. Despite its severity, current treatments remain ineffective, and existing detection
techniques are limited due to ethical concerns and technical constraints.
Methods:
Herein, an innovative approach was constructed for STX detection, utilizing mesoporous
silica nanoparticles (MSN) as a foundation. This innovative, easy, and label-free aptamer (Apt)-
sensor was fabricated. Apts were employed as molecular identification probes and "gated molecules,"
while rhodamine 6G was encapsulated within particles to serve as a signal probe. In a lack of
STX, Apts immobilized on an MSN surface kept a "gate" closed, preventing signal probe leakage.
Upon the presence of STX, the "gate" opened, allowing a particular binding of Apts to STX and a
subsequent release of a signal probe.
Results:
Experimental results demonstrated a positive correlation between fluorescence intensity and
concentrations of STX within a range of 1 to 80 nM, with an exceptional limit of detection of 0.12
nM. Furthermore, the selectivity and stability of a biosensor were rigorously evaluated, validating its
reliability.
Conclusion:
This newly developed sensing strategy exhibits remarkable performance in STX detection.
Its success holds significant promise for advancing portable STX detection equipment, thereby
addressing a pressing need for efficient and ethical detection methods in combating marine biotoxin
contamination.
Collapse
Affiliation(s)
- Najeeb Ullah
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering, Shaanxi
Normal University, Xi’an, 710119, China
- Department of Chemical Engineering, University of Tennessee, Chattanooga,
Tennessee 37403, United States
| | - Beenish Noureen
- Department of Biophysics, Institute of Medical Engineering, School of Basic Medical
Science, Xi’an Jiaotong University Health Center, Xi’an, Shaanxi, 710061, China
| | - Qurat Ul Ain Zahra
- Biomedical Imaging Center,
University of Science and Technology of China (USTC), Hefei, China
| | - Tariq Aziz
- Faculty of Civil Engineering and Mechanics,
Jiangsu University, Zhenjiang, 212013, China
| | - Somia Shehzadi
- University Institute of Medical Laboratory Technology, The University
of Lahore, Lahore, 54000, Pakistan
| | - Mohammad Y. Alfaifif
- Department of Biology, Faculty of Science, King Khalid University, Abha, 9004,
Saudi Arabia
| | | | | | - Asmat Ullah
- Clinical Research Institute, Zhejiang
Provincial People’s Hospital, Hangzhou, 310014, Zhejiang, China
| | - Haroon Iqbal
- Zhejiang Cancer Hospital,
Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
3
|
Mamatha G, Radha Krushna B, Malleshappa J, Subramanian B, Daruka Prasad B, Srikanth C, Nagabhushana H. Designing orange-red emitting luminescent platform for data security and information encryption based Sm3+ doped BLAO phosphor. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
He K, Yang J, Shi Q, Guan L, Sun L, Chen Z, Feng J, Dong S. Fluorescent aptamer-modified mesoporous silica nanoparticles for quantitative acetamiprid detection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88182-88192. [PMID: 35831655 DOI: 10.1007/s11356-022-21970-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Acetamiprid (ACE) is widely used to control aphids, brown planthoppers, and other pests in agricultural production. However, ACE is difficult to degrade in the environment, resulting in excessive residue, which causes acute and chronic toxicity to human beings and non-target organisms. Therefore, the development of a rapid, convenient, and highly sensitive method to quantify ACE is essential. In this study, aminated mesoporous silica nanoparticles (MSNs-NH2) were synthesized by one-pot method, and 6-carboxyl fluorescein modified aptamers (FAM-Apt) of ACE were adsorbed on the surface of MSNs-NH2 by electrostatic interaction. Finally, a simple and sensitive fluorescence analysis method for the rapid detection of ACE was established. In the absence of ACE, the negatively charged FAM-Apt was electrostatically bound to the positively charged MSNs-NH2, followed by centrifugation to precipitate MSNs-NH2@FAM-Apt, and no fluorescent signal was detected in the supernatant. In the presence of ACE, the specific combination of FAM-Apt with ACE was greater than its electrostatic interaction with MSNs-NH2, so that FAM-Apt was separated from MSNs-NH2, and the supernatant had strong fluorescence signal after centrifugation. For ACE detection, the linear concentration range was 50-1100 ng/mL, and the detection limit (LOD) was 30.26 ng/mL. The method exhibited high sensitivity, selectivity and reproducibility, which is suitable for practical sample analysis and provides guidance for rapid detection of pesticide residues.
Collapse
Affiliation(s)
- Kangli He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiuyun Shi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Lingjun Guan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Li Sun
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Sa Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Ansari AA, Aldajani KM, AlHazaa AN, Albrithen HA. Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Lavanya DR, Darshan GP, Malleshappa J, Premkumar HB, Sharma SC, Hariprasad SA, Nagabhushana H. One material, many possibilities via enrichment of luminescence in La 2Zr 2O 7:Tb 3+ nanophosphors for forensic stimuli aided applications. Sci Rep 2022; 12:8898. [PMID: 35614081 PMCID: PMC9132173 DOI: 10.1038/s41598-022-11980-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 12/28/2022] Open
Abstract
Engineering a single material with multidirectional applications is crucial for improving productivity, low cost, flexibility, least power consumption, etc. To achieve these requirements, novel design structures and high-performance materials are in urgent need. Lanthanide-doped nanophosphors have the greatest strengths and ability in order to tune their applications in various dimensions. However, applications of nanophosphor in latent fingerprints visualization, anti-counterfeiting, and luminescent gels/films are still in their infancy. This study demonstrated a simple strategy to enhance the luminescence of Tb3+ (1-11 mol %) doped La2Zr2O7 nanophosphors by conjugating various fluxes via a simple solution combustion route. The photoluminescence emission spectra reveal intense peaks at ~ 491, 546, 587, and 622 nm, which arises from 5D4 → 7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions, respectively. The highest emission intensity was achieved in the NH4Cl flux assisted nanophosphor as compared to NaBr and NH4F assisted samples. The colorimetric images of fingerprints visualized using the optimized nanophosphor on forensic related surfaces exhibit level -III ridge details, including sweat pores, the width of the ridges, bifurcation angle, and the successive distance between sweat pores, etc. These results are decisive parameters that clearly support the statement "no two persons have ever been found to have the same fingerprints". The anti-counterfeiting security ink was formulated using optimized nanophosphor and various patterns were designed by simple screen printing and dip pen technologies. The encoded information was decrypted only under ultraviolet 254 nm light. All the designed patterns are exhibit not just what it looks/feel like and how better it works. As a synergetic contribution of enhanced luminescence of the prepared nanophosphor, the green-emissive films were fabricated, which display excellent flexibility, uniformity, and transparency in the normal and ultraviolet 254 nm light illumination. The aforementioned results revealed that the prepared NH4Cl flux-assisted La2Zr2O7: Tb3+(7 mol %) NPs are considered to be the best candidate for multi-dimensional applications.
Collapse
Affiliation(s)
- D R Lavanya
- Department of Physics, University College of Science, Tumkur University, Tumkur, 572103, India
| | - G P Darshan
- Department of Physics, Faculty of Mathematical and Physical Sciences, M. S. Ramaiah University of Applied Sciences, Bengaluru, 560054, India.
| | - J Malleshappa
- Department of Physics, University College of Science, Tumkur University, Tumkur, 572103, India
| | - H B Premkumar
- Department of Physics, Faculty of Mathematical and Physical Sciences, M. S. Ramaiah University of Applied Sciences, Bengaluru, 560054, India
| | - S C Sharma
- Honarory Professor, Jain Deemed to be University, Bengaluru, 560069, India
| | | | - H Nagabhushana
- Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur, 572103, India.
| |
Collapse
|
7
|
Ghubish Z, El-Kemary M. Influence of Li+ doping on the luminescence performance of green nano-phosphor CaWO4:Tb3+ as a sweat pores fingerprint and cheiloscopy sensor. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Functionalized surfaces created by perturbation in luminescent polymer nanocomposites: Materials for forensic and security ink applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Qiu Y, Wen Z, Mei S, Wei J, Chen Y, Hu Z, Cui Z, Zhang W, Xie F, Guo R. Cation Crosslinking-Induced Stable Copper Nanoclusters Powder as Latent Fingerprints Marker. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3371. [PMID: 34947720 PMCID: PMC8708820 DOI: 10.3390/nano11123371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Luminescent copper nanoclusters (Cu NCs) have shown great potential in light-emitting devices (LEDs), chemical sensing, catalysis and biological fields. However, their practical use has been restricted by poor stability, and study on the stability of Cu NCs solid powder along with the mechanism is absent. In this study, stablized Cu NCs powder was first obtained by cation crosslinking method. Compared with the powder synthesized by solvent precipitation method, the stability of Cu NCs powder crosslinked by ionic inducer Ce3+ was enhanced around 100-fold. The storage time when the fluorescence intensity decreased to 85% (T85) was improved from 2 h to 216 h, which is the longest so far. The results of characterizations indicated that the aggregation structure was formed by the binding of Ce3+ with the capping ligands of Cu NCs, which helped in obtaining Ce-Cu NCs powder from aggregate precipitation in solution. Furthermore, this compact structure could avoid the destruction of ambient moisture resulting in long-lasting fluorescence and almost unchanged physical form. This demonstrated that phosphor, with excellent characteristics of unsophisticated synthesis, easy preservation and stable fluorescence, showed great potential in light sources, display technology and especially in latent fingerprints visualization on different substrates for forensic science.
Collapse
Affiliation(s)
- Yi Qiu
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Zhuoqi Wen
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China;
| | - Shiliang Mei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Jinxin Wei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Yuanyuan Chen
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Zhe Hu
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Zhongjie Cui
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Wanlu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Fengxian Xie
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Ruiqian Guo
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China;
- Zhongshan-Fudan Joint Innovation Center, Zhongshan 528437, China
- Yiwu Research Institute, Fudan University, Chengbei Road, Yiwu 322000, China
| |
Collapse
|
10
|
Sharma V, Choudhary S, Mankotia P, Kumari A, Sharma K, Sehgal R, Kumar V. Nanoparticles as fingermark sensors. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Ghubish Z, Kamal R, Mahmoud HR, Saif M, Hafez H, El-Kemary M. Novel fluorescent nano-sensor based on amino-functionalization of Eu 3+:SrSnO 3 for copper ion detection in food and real drink water samples. RSC Adv 2021; 11:18552-18564. [PMID: 35480928 PMCID: PMC9033474 DOI: 10.1039/d1ra01190a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/03/2022] Open
Abstract
Lanthanide-doped nanoparticles exhibit unique optical properties and have been widely utilized for different sensing applications. Herein, the Eu3+:SrSnO3@APTS nanosensor was synthesized and its optical properties were analyzed using UV-Vis and photoluminescence spectroscopy. The TEM images of the synthesized nanophosphor Eu3+:SrSnO3@APTS exhibited peanut-like morphology, composed of two or more spherical nanoparticles with an average diameter ∼33 nm. Effects of environmental pH values and doping concentrations as well as amino functionalization on the structure of Eu3+:SrSnO3 were investigated. The as-synthesized optical nanosensor was used for determination of copper ions based on a fluorescence quenching approach. Red emission with a long lifetime was obtained in the case of the 0.06 mol Eu3+:SrSnO3@APTS sample. Under the optimal experimental conditions, a Stern-Volmer plot exhibited a good linearity for copper ions over the concentration (0.00-10.8) × 10-11 mol L-1 with a correlation efficient of 0.996 and a limit of detection 3.4 × 10-12 mol L-1. The fluorescent sensor was dynamically quenched via a coulombic interaction mechanism between the Eu3+ (5L6) and Cu2+. The Eu3+:SrSnO3@APTS nanosensor with the optimal Eu3+ dopant concentration of 0.06 mol was applied for copper determination in food and real drink water samples with high recovery values. We believe that the developed nanosensor probe can also be used for the detection of other toxic compounds, with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Z Ghubish
- Institute of Nanoscience & Nanotechnology, KafrelSheikh University Kafr ElSheikh 33516 Egypt
| | - R Kamal
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo 11711 Egypt
| | - Hala R Mahmoud
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo 11711 Egypt
| | - M Saif
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo 11711 Egypt
| | - H Hafez
- Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City Egypt
| | - M El-Kemary
- Institute of Nanoscience & Nanotechnology, KafrelSheikh University Kafr ElSheikh 33516 Egypt
| |
Collapse
|
12
|
Trabelsi H, Akl M, Akl SH. Ultrasound assisted Eu3+–doped strontium titanate nanophosphors: Labeling agent useful for visualization of latent fingerprints. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Lian J, Meng F, Wang W, Zhang Z. Recent Trends in Fluorescent Organic Materials for Latent Fingerprint Imaging. Front Chem 2020; 8:594864. [PMID: 33240855 PMCID: PMC7680903 DOI: 10.3389/fchem.2020.594864] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Fingerprints are an important kind of material evidence with the key function in personal identification, which are unique and life-long to everyone. Latent (invisible) fingerprints are common at the crime scene, needing to be visualized with proper methods in order to identify sources of the fingerprints in routine forensic practice. Fluorescent imaging of latent fingerprints has the advantage of high contrast, sensitivity, selectivity, and less dependency on instruments. Taking the environment and users' safety into consideration, organic materials for fluorescent imaging of latent fingerprints are reviewed mainly in recent 5 years. New strategies of fingerprint reagents and improved performances established for fingerprint development based on fluorescent organic materials are discussed in the view of forensic practice. In addition, we briefly highlight current challenges of recent fluorescent imaging works based on organic materials for the latent fingerprints development in forensic practice.
Collapse
Affiliation(s)
- Jie Lian
- College of Criminal Investigation, People's Public Security University of China, Beijing, China
| | - Fanda Meng
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Wei Wang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Zhitao Zhang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| |
Collapse
|