1
|
Dalisay DS, Tenebro CP, Sabido EM, Suarez AFL, Paderog MJV, Reyes-Salarda R, Saludes JP. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar Drugs 2024; 22:114. [PMID: 38535455 PMCID: PMC10972102 DOI: 10.3390/md22030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Angelica Faith L. Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
| | - Melissa June V. Paderog
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Pharmacy, University of San Agustin, Iloilo City 5000, Philippines
| | - Rikka Reyes-Salarda
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
| | - Jonel P. Saludes
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
- Department of Chemistry, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
2
|
Xu M, Bai Z, Xie B, Peng R, Du Z, Liu Y, Zhang G, Yan S, Xiao X, Qin S. Marine-Derived Bisindoles for Potent Selective Cancer Drug Discovery and Development. Molecules 2024; 29:933. [PMID: 38474445 PMCID: PMC10935119 DOI: 10.3390/molecules29050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Marine-derived bisindoles exhibit structural diversity and exert anti-cancer influence through multiple mechanisms. Comprehensive research has shown that the development success rate of drugs derived from marine natural products is four times higher than that of other natural derivatives. Currently, there are 20 marine-derived drugs used in clinical practice, with 11 of them demonstrating anti-tumor effects. This article provides a thorough review of recent advancements in anti-tumor exploration involving 167 natural marine bisindole products and their derivatives. Not only has enzastaurin entered clinical practice, but there is also a successfully marketed marine-derived bisindole compound called midostaurin that is used for the treatment of acute myeloid leukemia. In summary, investigations into the biological activity and clinical progress of marine-derived bisindoles have revealed their remarkable selectivity, minimal toxicity, and efficacy against various cancer cells. Consequently, they exhibit immense potential in the field of anti-tumor drug development, especially in the field of anti-tumor drug resistance. In the future, these compounds may serve as promising leads in the discovery and development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Mengwei Xu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China;
| | - Baocheng Xie
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China;
| | - Rui Peng
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China;
| | - Yan Liu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Guangshuai Zhang
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Si Yan
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China;
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Shuanglin Qin
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China;
| |
Collapse
|
3
|
Presenjit, Chaturvedi S, Singh A, Gautam D, Singh K, Mishra AK. An Insight into the Effect of Schiff Base and their d and f Block Metal Complexes on Various Cancer Cell Lines as Anticancer Agents: A Review. Anticancer Agents Med Chem 2024; 24:488-503. [PMID: 38279753 DOI: 10.2174/0118715206280314231201111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 01/28/2024]
Abstract
Over the last few decades, an alarming rise in the percentage of individuals with cancer and those with multi-resistant illnesses has forced researchers to explore possibilities for novel therapeutic approaches. Numerous medications currently exist to treat various disorders, and the development of small molecules as anticancer agents has considerable potential. However, the widespread prevalence of resistance to multiple drugs in cancer indicates that it is necessary to discover novel and promising compounds with ideal characteristics that could overcome the multidrug resistance issue. The utilisation of metallo-drugs has served as a productive anticancer chemotherapeutic method, and this approach may be implemented for combating multi-resistant tumours more successfully. Schiff bases have been receiving a lot of attention as a group of compounds due to their adaptable metal chelating abilities, innate biologic properties, and versatility to tweak the structure to optimise it for a specific biological purpose. The biological relevance of Schiff base and related complexes, notably their anticancer effects, has increased in their popularity as bio-inorganic chemistry has progressed. As a result of learning about Schiff bases antitumor efficacy against multiple cancer cell lines and their complexes, researchers are motivated to develop novel, side-effect-free anticancer treatments. According to study reports from the past ten years, we are still seeking a powerful anticancer contender. This study highlights the potential of Schiff bases, a broad class of chemical molecules, as potent anticancer agents. In combination with other anticancer strategies, they enhance the efficacy of treatment by elevating the cytotoxicity of chemotherapy, surmounting drug resistance, and promoting targeted therapy. Schiff bases also cause cancer cell DNA repair, improve immunotherapy, prevent angiogenesis, cause apoptosis, and lessen the side effects of chemotherapy. The present review explores the development of potential Schiff base and their d and f block metal complexes as anticancer agents against various cancer cell lines.
Collapse
Affiliation(s)
- Presenjit
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, 226025, Lucknow, India
| | - Shubhra Chaturvedi
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
| | - Akanksha Singh
- Department of Zoology, Swami Shraddhanand College, University of Delhi, 110007, India
| | - Divya Gautam
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
- Centre of Nanotechnology, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Kaman Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, 226025, Lucknow, India
| | - Anil Kumar Mishra
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
| |
Collapse
|
4
|
Dhanalakshmi B, Anil Kumar BM, Muddenahalli Srinivasa S, Vivek HK, Sennappan M, Rangappa S, Srinivasa Murthy V. Design and synthesis of 4-aminophenol-1,3,4-oxadiazole derivative potentiates apoptosis by targeting MAP kinase in triple negative breast cancer cells. J Biomol Struct Dyn 2023; 42:13114-13129. [PMID: 37948299 DOI: 10.1080/07391102.2023.2274973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Women below 40 years greatly suffer from triple negative breast cancers (TNBCs). Compared to other breast cancer cases, the poor prognosis and lower survival rate of TNBC patients make it an alarming task to save the human era from this dreadful disease. Therefore, identifying potential novel leads is urgently required to combat the TNBC. To discover a novel anticancer agent, we synthesized a series of novel 4-aminophenolbenzamide-1,3,4 oxadiazole hybrid analogues (7a-l). The structure of the compounds was confirmed by spectral methods (1H & 13C NMR, IR and MS). All the compounds were subjected to their in-silico and in-vitro antiproliferative studies against the TNBC cell lines MDA-MB-468 and MDA-MB-231. The investigations revealed that 7i has significantly promoted apoptosis against MDA-MB-468 and MDA-MB-231 cells with IC50 values of 16.89 and 19.43 µM, respectively. Molecular docking of 7i, with MAPK has exhibited the highest binding score of -7.10 kcal/mol by interacting with crucial amino acids present at the active sites. Molecular docking is further validated with molecular dynamic studies with simulation for 100 ns, depicting various stable interactions with MAPK. Compound 7i, forms stable H-bonds and π-π stacking with amino acid residues. Molecular dynamic simulation (MDS) reveals that hydrophobic and water bridges were very prominent for 7i to bind, with the amino acid residues in close proximity to the active site of p38 MAPK. The investigations show that the In-vitro antiproliferative study of 7i agreed with the in-silico studies. Collectively, our investigations depict 7i as a potent novel lead for the inhibition of TNBCs by targeting p38 MAPK.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Boregowda Dhanalakshmi
- Department of Chemistry, School of Engineering, Dayananda Sagar University, Bengaluru, India
- Department of Chemistry, Rajeev Institute of Technology, Visvesvaraya Technological University, Hassan, India
| | - Belagal Motatis Anil Kumar
- Department of Molecular Biology, Adichunchanagiri School of Natural Sciences, ACU-CRI, Adichunchanagiri University, BGSIT, Nagamangala,India
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Nagamangala, India
| | - Sudhanva Muddenahalli Srinivasa
- Department of Molecular Biology, Adichunchanagiri School of Natural Sciences, ACU-CRI, Adichunchanagiri University, BGSIT, Nagamangala,India
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Nagamangala, India
| | - Hamse Kameshwar Vivek
- Department of Biotechnology, Adichunchanagiri School of Natural Sciences, ACU-CRI, Adichunchanagiri University, BGSIT, Nagamangala, India
- Department of Biochemistry, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Nagamangala, India
| | - Madhappan Sennappan
- Department of Chemistry, Dayananda Sagar College of Engineering, Bengaluru, India
| | - Shobith Rangappa
- Department of Molecular Biology, Adichunchanagiri School of Natural Sciences, ACU-CRI, Adichunchanagiri University, BGSIT, Nagamangala,India
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Nagamangala, India
| | | |
Collapse
|
5
|
Pecoraro C, Terrana F, Panzeca G, Parrino B, Cascioferro S, Diana P, Giovannetti E, Carbone D. Nortopsentins as Leads from Marine Organisms for Anticancer and Anti-Inflammatory Agent Development. Molecules 2023; 28:6450. [PMID: 37764226 PMCID: PMC10537790 DOI: 10.3390/molecules28186450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The marine environment is an excellent source of molecules that have a wide structural diversity and a variety of biological activities. Many marine natural products (MNPs) have been established as leads for anticancer drug discovery. Most of these compounds are alkaloids, including several chemical subclasses. In this review, we focus on the bis-indolyl alkaloid Nortopsentins and their derivatives with antiproliferative properties. Nortopsentins A-C were found to exhibit in vitro cytotoxicity against the P388 murine leukaemia cell line. Their structural manipulation provided a wide range of derivatives with significant anti-tumour activity against human cell lines derived from different cancer types (bladder, colon, gastric, CNS, liver, lung, breast, melanoma, ovarian, pancreatic, prostate, pleural mesothelioma, renal, sarcoma, and uterus). In vivo assays on animal models also proved that Nortopsentins and related bis-indolyl compounds have potent anti-inflammatory activity. These remarks set the foundation for future investigations into the development of new Nortopsentin derivatives as new anticancer and anti-inflammatory agents.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Francesca Terrana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Giovanna Panzeca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme, PI, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| |
Collapse
|
6
|
Mohammed M, Haj N. Synthesis and Pharmacological Characterization of Metronidazole-Oxadiazole Derivatives. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:167-175. [PMID: 36895463 PMCID: PMC9989235 DOI: 10.30476/ijms.2022.95534.2691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/23/2022] [Accepted: 08/28/2022] [Indexed: 03/11/2023]
Abstract
Background The use of antibiotics with or without prescription is increasing worldwide. With certain limitations, metronidazole (MTZ) is extensively used as an antibacterial and antiparasitic drug. Derivatives of 1,2,4-oxadiazole (ODZ) are used to modify the chemical structure of drugs. The present study aimed to synthesize new MTZ-ODZ derivatives that could potentially lead to new medications. Methods The reaction of MTZ with ethyl chloroacetate and potassium carbonate anhydrous was used to produce compound 7. This compound was treated with hydrazine hydrate in methanol to obtain compound 8. Carbon disulfide and potassium hydroxide were then added to obtain compound 9, which was then mixed with various α-haloketones to obtain compounds 10a to 10f. Subsequently, the structures of the new MTZ-ODZ derivatives were determined. Results All new compounds exhibited excellent activity against all tested organisms. The synthesized compounds showed a significant radical scavenging activity. The IC50 value for compounds 10a, 10b, 10c, 10d, 10e, and 10f was 70.42±0.15, 70.52±0.54, 85.21±0.85, 80.10±0.46, 82.52±0.13, and 70.45±0.12 g/mL, respectively. In terms of antigiardial activity, the IC50 value for compounds 10a,10b, 10c, and 10d ranged from 1.31±0.11 µM to 2.26±0.49 µM. In contrast, the IC50 for MTZ was 3.71±0.27 µM. Compound 10f showed the highest antigiardial activity with an IC50 value of 0.88±0.52 µM. Conclusion Most of the MTZ-ODZ derivatives showed high radical scavenging activity in the benzene ring due to the activation of certain groups, such as OCH3, NO2, and OH. The results suggest that the newly synthesized compounds could be used as an antiparasitic drug.
Collapse
Affiliation(s)
- Mohsin Mohammed
- Department of Chemistry, College of Science, University of Kirkuk, Kirkuk, Iraq
| | - Nadia Haj
- Department of Applied Geology, College of Science, University of Kirkuk, Kirkuk, Iraq
| |
Collapse
|
7
|
Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, Thareja S, Yadav JP, Pathak P, Grishina M, Verma A, Khalilullah H, Jaremko M, Emwas AH, Kumar P. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals (Basel) 2023; 16:299. [PMID: 37259442 PMCID: PMC9965678 DOI: 10.3390/ph16020299] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the major healthcare challenges across the globe. Several anticancer drugs are available on the market but they either lack specificity or have poor safety, severe side effects, and suffer from resistance. So, there is a dire need to develop safer and target-specific anticancer drugs. More than 85% of all physiologically active pharmaceuticals are heterocycles or contain at least one heteroatom. Nitrogen heterocycles constituting the most common heterocyclic framework. In this study, we have compiled the FDA approved heterocyclic drugs with nitrogen atoms and their pharmacological properties. Moreover, we have reported nitrogen containing heterocycles, including pyrimidine, quinolone, carbazole, pyridine, imidazole, benzimidazole, triazole, β-lactam, indole, pyrazole, quinazoline, quinoxaline, isatin, pyrrolo-benzodiazepines, and pyrido[2,3-d]pyrimidines, which are used in the treatment of different types of cancer, concurrently covering the biochemical mechanisms of action and cellular targets.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Veena Vijayan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Deepak Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jashwanth Naik
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jagat Pal Yadav
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur 209217, India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
8
|
Xu M, Peng R, Min Q, Hui S, Chen X, Yang G, Qin S. Bisindole natural products: A vital source for the development of new anticancer drugs. Eur J Med Chem 2022; 243:114748. [PMID: 36170798 DOI: 10.1016/j.ejmech.2022.114748] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
Currently, the number of new cancer cases and deaths worldwide is increasing year on year. In addition to the requirement for cancer prevention, the top priority is still to seek the effective cure of cancer. In over a half century of constant exploration, increasing attention has been paid to the excellent anticancer activity of natural products, with more and more natural products isolated, identified and detected. For this study, the focus lies the natural products of bisindole, where two indole molecules are indirectly linked or directly polymerized, developing the diversity of structure and mechanism, accompanied with the better anticancer activity than monomers. There has been a long history of applying indirubin and vincristine in cancer treatment, verifying the anticancer effect of bisindoles. Vincribine, midostaurin and other anticancer drugs have also been developed and commercialized. In this paper, a review regarding the potential therapeutic effect of bisindole alkaloids extracted from various natural products was carried out, in which the progress made in research of 242 bisindole alkaloids for cancer treatment was introduced. These compounds may be applicable as medicinal products for clinical research in the future.
Collapse
Affiliation(s)
- Mengwei Xu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Rui Peng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Qing Min
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Siwen Hui
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, PR China
| | - Xin Chen
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, PR China.
| | - Shuanglin Qin
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, PR China.
| |
Collapse
|
9
|
Wang JJ, Sun W, Jia WD, Bian M, Yu LJ. Research progress on the synthesis and pharmacology of 1,3,4-oxadiazole and 1,2,4-oxadiazole derivatives: a mini review. J Enzyme Inhib Med Chem 2022; 37:2304-2319. [PMID: 36000176 PMCID: PMC9423840 DOI: 10.1080/14756366.2022.2115036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Oxadiazole is a five-membered heterocyclic compound containing two nitrogen atoms and one oxygen atom. The 1,3,4-oxadiazole and 1,2,4-oxadiazole have favourable physical, chemical, and pharmacokinetic properties, which significantly increase their pharmacological activity via hydrogen bond interactions with biomacromolecules. In recent years, oxadiazole has been demonstrated to be the biologically active unit in a number of compounds. Oxadiazole derivatives exhibit antibacterial, anti-inflammatory, anti-tuberculous, anti-fungal, anti-diabetic and anticancer activities. In this paper, we report a series of compounds containing oxadiazole rings that have been published in the last three years only (2020-2022) as there was no report or their activities described in any article in 2019, which will be useful to scientists in research fields of organic synthesis, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Wen Sun
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Wei-Dong Jia
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Ming Bian
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Li-Jun Yu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| |
Collapse
|
10
|
Majid SA, Mir JM, Jan G, Shalla AH. Schiff base complexes, cancer cell lines, and anticancer evaluation: a review. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2131402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - Gowhar Jan
- Department of Chemistry, IUST, Awantipora Pulwama, India
| | | |
Collapse
|
11
|
Mehra A, Sharma V, Verma A, Venugopal S, Mittal A, Singh G, Kaur B. Indole Derived Anticancer Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202202361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Vikas Sharma
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Anil Verma
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Sneha Venugopal
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Gurdeep Singh
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| | - Balwinder Kaur
- Department of Pharmaceutical Chemistry School of Pharmaceutical Sciences Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab 144411 India
| |
Collapse
|
12
|
Desai NC, Bhatt K, Monapara J, Pandit U, Khedkar VM. Conventional and Microwave-Assisted Synthesis, Antitubercular Activity, and Molecular Docking Studies of Pyrazole and Oxadiazole Hybrids. ACS OMEGA 2021; 6:28270-28284. [PMID: 34723024 PMCID: PMC8552481 DOI: 10.1021/acsomega.1c04411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/24/2021] [Indexed: 05/12/2023]
Abstract
Microwave-assisted organic reaction enhancement (MORE) has become more important in synthetic organic chemistry for efficient resource utilization. In this study, we synthesized bioactive compounds using both traditional and microwave methods. Microwave-assisted synthesis takes less time and produces higher yields and quality than conventional approaches. We reported the synthesis of N'-(1-(2-(3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl)-5-phenyl-1,3,4-oxadiazol-3(2H)-yl)ethylidene) substituted hydrazides (4a-t). We also tested them against two strains: M. tuberculosis H37Ra and M. bovis BCG. Against M. tuberculosis H37Ra, the compounds 4e, 4h, 4k, 4p, and 4s were the most effective. Compounds 4f, 4g, and 4s showed significant activity against M. bovis BCG. The structures of newly synthesized molecules were determined using spectral methods. Furthermore, molecular docking investigations into the active site of mycobacterial InhA yielded well-clustered solutions for these compounds' binding modalities producing a binding affinity in the range of -10.366 to -8.037. Theoretical results were in good accord with the observed experimental values. The docking score of compound 4e was -10.366, and the Glide energy was -66.459 kcal/mol.
Collapse
Affiliation(s)
- Nisheeth C. Desai
- Division
of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat 364002, India
| | - Kandarp Bhatt
- Division
of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat 364002, India
| | - Jahnvi Monapara
- Division
of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat 364002, India
| | - Unnat Pandit
- Special
Centre for Systems Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Vijay M. Khedkar
- Department
of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University, Pune, Maharashtra 411048, India
| |
Collapse
|
13
|
1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101284] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Srilaxmi D, Sreenivasulu R, Mak KK, Pichika MR, Jadav SS, Ahsan MJ, Rao MVB. Design, synthesis, anticancer evaluation and molecular docking studies of chalcone linked pyrido[4,3-b]pyrazin-5(6H)-one derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Ahsan MJ. 1,3,4-Oxadiazole Containing Compounds As Therapeutic Targets For Cancer Therapy. Mini Rev Med Chem 2021; 22:164-197. [PMID: 33634756 DOI: 10.2174/1389557521666210226145837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/08/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is the first or second leading cause of premature death in 134 of 183 countries in the world. 1,3,4-Oxadiazoles are five memebered heterocyclic rings containing two nitrogen (two atoms) and oxygen (one atom). They show better thermal stability, metabolic stability, aqueous solubility and lower lipophilicity than the other isomeric oxadiazoles. They are important class of heterocycles present in many drug structures like Raltegravir, Furamizole Tidazosin, Nesapidil, Setileuton (MK-0633) and Zibotentan. Presence of this nucleus in the therapeutics has made them an indispensable anchor for drug design and development. Several 1,3,4-oxadiazoles are prepared and reported as anticancer agents by numerous scientists worldwide. OBJECTIVES The present review discusses the anticancer potentials together with the molecular targets of 1,3,4-oxadiazoles reported since 2010. The structure activity relationship (SAR) and molecular docking simulation on different targets have also been discussed herein. Some of the important cancer targets have also been explored. METHODS The most potent 1,3,4-oxadiazoles reported in literature was highlighted in the manuscript. The anticancer activity was reported in terms of growth percent (GP), percent growth inhibition (%GI), GI50, IC50, and LC50 and TGI. RESULTS 1,3,4-Oxadiazoles are an important heterocyclic scaffolds with broad spectrum biological activities. They may be either mono substituted or disubstituted and act as an indispensable anchor for drug design and discovery due to their thermal stability together with low lipophilicity. They exhibited anticancer potentials and showed the inhibitions of various cancer targets. CONCLUSION The discussion outlined herein will proved to be a helpful and vital tool for medicinal chemists investigating and working with 1,3,4-oxadiazoles and anticancer research programs.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan 302 039. India
| |
Collapse
|
16
|
Sireesha R, Sreenivasulu R, Chandrasekhar C, Jadav SS, Pavani Y, Rao MVB, Subbarao M. Design, synthesis, anti-cancer evaluation and binding mode studies of benzimidazole/benzoxazole linked β-carboline derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
|
18
|
Mbugua S, Sibuyi NRS, Njenga LW, Odhiambo RA, Wandiga SO, Meyer M, Lalancette RA, Onani MO. New Palladium(II) and Platinum(II) Complexes Based on Pyrrole Schiff Bases: Synthesis, Characterization, X-ray Structure, and Anticancer Activity. ACS OMEGA 2020; 5:14942-14954. [PMID: 32637768 PMCID: PMC7330904 DOI: 10.1021/acsomega.0c00360] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/14/2020] [Indexed: 05/09/2023]
Abstract
New palladium (Pd)II and platinum (Pt)II complexes (C1-C5) from the Schiff base ligands, R-(phenyl)methanamine (L1), R-(pyridin-2-yl)methanamine (L2), and R-(furan-2-yl)methanamine (L3) (R-(E)-N-((1H-pyrrol-2-yl) methylene)) are herein reported. The complexes (C1-C5) were characterized by FTIR, 1H and 13C NMR, UV-vis, and microanalyses. Single-crystal X-ray crystallographic analysis was performed for the two ligands (L1-L2) and a Pt complex. Both L1 and L2 belong to P21/n monoclinic and P-1 triclinic space systems, respectively. The complex C5 belongs to the P21/c monoclinic space group. The investigated molar conductivity of the complexes in DMSO gave the range 4.0-8.8 μS/cm, suggesting neutrality, with log P values ≥ 1.2692 ± 0.004, suggesting lipophilicity. The anticancer activity and mechanism of the complexes were investigated against various human cancerous (Caco-2, HeLa, HepG2, MCF-7, and PC-3) and noncancerous (MCF-12A) cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Apopercentage assays, respectively. C5 demonstrated strong DNA-binding affinity for calf thymus DNA (CT-DNA) with a binding constant of 8.049 × 104 M-1. C3 reduced cell viability of all the six cell lines, which included five cancerous cell lines, by more than 80%. The C5 complex also demonstrated remarkably high selectivity with no cytotoxic activity toward the noncancerous breast cell line but reduced the viability of the five cancerous cell lines, which included one breast cancer cell line, by more than 60%. Further studies are required to evaluate the selective toxicity of these two complexes and to fully understand their mechanism of action.
Collapse
Affiliation(s)
- Simon
N. Mbugua
- Organometallics
and Nanomaterials, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
- Department
of Chemistry, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Nicole R. S. Sibuyi
- Department
of Science and Technology/Mintek Nanotechnology Innovation Centre
(DST/Mintek NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Lydia W. Njenga
- Department
of Chemistry, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Ruth A. Odhiambo
- Department
of Chemistry, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Shem O. Wandiga
- Department
of Chemistry, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Mervin Meyer
- Department
of Science and Technology/Mintek Nanotechnology Innovation Centre
(DST/Mintek NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Roger A. Lalancette
- Rutgers,
Department of Chemistry, Rutgers State University, 73 Warren St., Newark, New Jersey 07102, United States
| | - Martin O. Onani
- Organometallics
and Nanomaterials, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
19
|
Suma VR, Sreenivasulu R, Rao MVB, Subramanyam M, Ahsan MJ, Alluri R, Rao KRM. Design, synthesis, and biological evaluation of chalcone-linked thiazole-imidazopyridine derivatives as anticancer agents. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02590-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|